Если сначала принять число молекул равным бесконечности и позволить времени движения становиться очень большим, то в подавляющем большинстве случаев получается кривая [для энтропии как функции времени], которая асимптотически приближается к оси абсцисс. Как легко видеть, теорема Пуанкаре в этом случае неприменима.[184]
Однако на самом деле он не принимал этот вариант всерьез. Да и не должен был, так как в данном случае подвергается сомнению строгое следствие из теоремы о возвращении, а не ее базовая суть. Если средняя плотность частиц в пространстве отлична от нуля, то в нем будут встречаться всевозможные маловероятные флуктуации, включая низкоэнтропийные состояния; просто в флуктуациях в разные моменты времени обычно участвуют разные наборы частиц, поэтому возвращения, строго говоря, не происходит. Для этого сценария характерны все проблемы истинно возвратной системы.
Третий вариант ответа на возражение о возвращении — это даже не побег, это полная капитуляция. Мы признаем, что Вселенная вечна и что возвращение происходит, то есть во Вселенной наблюдаются периоды, когда энтропия возрастает, и периоды, когда она убывает. И мы просто говорим: да, это та Вселенная, в которой мы живем.
Давайте теперь рассмотрим все три возможности в контексте современного мышления. Многие современные космологи, хотя зачастую и неявно, подписываются под одной из разновидностей первого варианта, объединяя загадку низкоэнтропийных начальных условий с загадкой Большого взрыва. Это вполне жизнеспособная перспектива, хотя в ней слегка разочаровывает необходимость мириться с тем фактом, что состояние Вселенной в начале времен выходит за рамки физических законов. Второй вариант — во Вселенной бесконечное множество частиц, а теорема о возвращении попросту не работает — позволяет отвертеться от технических условий теоремы, но не помогает понять, почему наша Вселенная именно такая, какой она выглядит сейчас. Можно было бы рассмотреть вариацию данного подхода, где во Вселенной существует лишь конечное множество частиц, но есть тем не менее бесконечное пространство для эволюции. Тогда возвращения действительно отсутствовали бы, а энтропия бы увеличивалась, не зная границ, далеко в прошлое и далеко в будущее. Это несколько напоминает сценарий Мультиленной, о котором я выскажусь чуть далее. Однако, насколько мне известно, ни Больцман, ни его современники не придерживались такой точки зрения.
Третий вариант — что возвращения действительно происходят во Вселенной, где мы живем, — не может быть верен, в чем мы скоро убедимся. Ошибки, доказывающие его несостоятельность, позволяют извлечь несколько ценных уроков.
Флуктуации вокруг равновесия
Вспомните контейнер с перегородкой, который мы рассматривали в главе 8. В перегородке есть отверстие, позволяющее молекулам газа периодически пролетать с одной стороны на другую. Для того чтобы смоделировать эволюцию неизвестного микросостояния каждой частицы, мы допускали, что у каждой молекулы есть небольшой фиксированный шанс перелететь на другую сторону. Формула Больцмана для энтропии помогла нам продемонстрировать, как энтропия будет меняться с течением времени; она имеет ярко выраженную тенденцию к увеличению, по крайней мере если в начале эксперимента вручную создать в системе состояние низкой энтропии, когда большая часть молекул располагается по одну сторону перегородки. Система естественным образом стремится к равновесию, то есть к состоянию, в котором количество молекул по обе стороны перегородки примерно одинаково. В этом случае энтропия достигает максимального значения, помеченного «1» на вертикальной оси графика 10.3.
Однако что, если вначале система