Однако это совершенно не означает, что мы не можем полагаться на классическую физику в таких делах, как игра в баскетбол или запуск спутников на орбиту. В квантовой механике не существует «классического предела», в котором объекты ведут себя так, как если бы Ньютон всегда был прав, и этот предел включает в себя весь наш каждодневный опыт. Мы никогда не обнаруживаем объекты макроскопических размеров, такие как кошки, в суперпозициях в форме «75 % здесь, 25 % там»; для них всегда верно «99,9999999 процента (или больше) здесь, 0,0000001 процента (или намного меньше) там». Классическая механика — это приблизительное описание работы макроскопического мира, и это очень хорошее приближение. Реальный мир живет по правилам квантовой механики, однако классической механики более чем достаточно для повседневной жизни. Лишь начав рассматривать атомы и элементарные частицы, мы в полной мере сталкиваемся со следствиями квантовой механики и понимаем, что теперь без нее никуда.
Как работают волновые функции
Вы можете задаваться вопросом: а откуда мы знаем, что написанное выше — правда? В конце концов, какая разница между «существует 75-процентная вероятность увидеть кошку под столом» и «существует 75-процентная вероятность того, что кошка находится под столом». Трудно вообразить эксперимент, который мог бы провести различие между этими вероятностями; в конце концов, единственный способ узнать, где кошка, — посмотреть в ее любимых местах. Однако существует критически важное явление, благодаря которому суть различия становится очевидной. Это
В классической механике, где для описания состояния частицы указывают ее положение и импульс, об этом состоянии можно думать как о наборе чисел. Для одной частицы в обычном трехмерном пространстве необходимо указать шесть чисел: положение в каждом из трех направлений и импульс в каждом из трех направлений. В квантовой механике состояние описывается волновой функцией, которую также можно представлять себе как набор чисел. Задача этих чисел — сообщать нам для любого наблюдения или измерения, которое нам только вздумается выполнить, какова вероятность того, что мы получим определенный результат. Таким образом, казалось бы, совершенно естественно полагать, что необходимые нам числа — это самые обыкновенные вероятности: вероятность того, что мы увидим Китти на диване, вероятность того, что мы увидим Китти под столом, и т. д.
Выясняется, однако, что это работает совсем не так. Волновые функции на самом деле схожи с волнами: типичная волновая функция колеблется в пространстве и времени подобно волне на поверхности пруда. Это не совсем очевидно в нашем простом примере, предусматривающем только два возможных результата наблюдений: «на диване» и «под столом». Но если рассмотреть наблюдения с непрерывным множеством возможных исходов, например наблюдение за положением реальной кошки в реальной комнате, то многое сразу же прояснится. Волновая функция похожа на волну на поверхности пруда; единственная разница в том, что это волна в пространстве всех возможных результатов наблюдения: например, всех возможных положений в комнате.
Когда мы видим реальную волну, то замечаем, что относительно поверхности пруда в спокойном состоянии высота воды в волне в разных местах разная. Где-то она выше уровня спокойной воды, а где-то она опускается ниже. Для того чтобы описать волну математически, мы могли бы с каждой точкой пруда связать
При таких условиях у нас остается только одна нерешенная проблема: мы говорим о вероятностях, а вероятность наступления какого-то события никогда не может быть отрицательным числом. Таким образом, нельзя утверждать, что амплитуда, связанная с определенным результатом наблюдения, дает вероятность наступления этого результата; вместо этого должен существовать способ вычисления вероятности, основанный на известном значении амплитуды. К счастью, расчет очень прост! Для того чтобы получить вероятность, нужно взять амплитуду и возвести ее в квадрат: