В теориях, которые используются физиками для описания реального мира, присутствует общее базовое понятие состояния, которое «развивается с течением времени». Это касается как классической механики, сформулированной Ньютоном, так и общей теории относительности и квантовой механики, и даже квантовой теории поля и стандартной модели в физике элементарных частиц. На любой из наших шахматных досок состоянием является горизонтальная строка квадратиков, каждый из которых окрашен в белый или серый цвет (и, возможно, несет какую-то дополнительную информацию). В зависимости от подхода к физике реального мира определение состояния может меняться. Однако каким бы оно ни было, мы можем задавать одни и те же вопросы об изменении направления времени и других возможных симметриях нашего мира.
«Состояние» физической системы — это «полный набор информации о системе в определенный момент времени, которая достаточна для описания ее дальнейшего развития[115]
с учетом законов физики». Если точнее, то данное определение распространяется только на изолированные системы, то есть системы, не подверженные влиянию непредсказуемых внешних сил (в ситуации с предсказуемыми внешними силами мы можем просто-напросто объявить их частью «законов физики», действующих на данную систему). Таким образом, мы можем рассуждать как обо всей Вселенной, которая предполагается изолированной, так и о каком-то космическом корабле, находящемся на достаточном удалении от любых планет или звезд.Рассмотрим для начала классическую механику — мир сэра Исаака Ньютона.[116]
Что нам нужно знать, чтобы предсказать будущее системы в ньютоновской механике? Выше я уже упоминал об этом: нам потребуются положения и скорости всех элементов системы. Однако не будем торопиться, а попробуем прийти к этому ответу постепенно, шаг за шагом.Когда кто-то упоминает ньютоновскую механику, можно не сомневаться — дело закончится игрой в бильярд.[117]
Но давайте представим себе новый вариант игры — не тот традиционный бильярд с восемью шарами, а нечто уникальное. Свое гипотетическое развлечение с бильярдными шарами мы назовем бильярдом физиков. В попытке избавиться от излишних усложнений и добраться до сути вещей физики выдумывают игры, в которых нет ни шума, ни трения: идеально круглые сферы катаются по столу и отталкиваются друг от друга, не теряя ни капли энергии. Настоящие бильярдные шары ведут себя совершенно по-другому — каждому столкновению сопутствуют звук удара и рассеяние определенного количества энергии. Это наглядное проявление работы стрелы времени: шум и трение создают энтропию. Мы же на мгновение отбросим подобные сложности.Для начала вообразим
На первый взгляд кажется, что логично считать состоянием шара в любой момент времени его положение на столе. В конце концов, если сделать фотографию стола, то что мы увидим? Место, где в тот момент находился шар. Однако выше мы определили состояние как полную информацию, требуемую для предсказания движения системы; очевидно, что одного лишь положения нам недостаточно. Если я скажу, что шар находится точно в центре стола (и больше ничего), и попрошу вас предсказать, где он окажется секундой позже, то вы не сможете дать мне точный ответ, ведь вам неизвестно, в какую сторону шар катился.
Разумеется, для предсказания движения шара на основании информации, имеющейся в наличии в конкретный момент времени, нам нужно знать