Читаем Великий треугольник, или Странствия, приключения и беседы двух филоматиков полностью

— Так ведь смотря какая игра, — возражает Асмодей, ловко подбрасывая на ладони какие-то шарики. — Вот смотрите, мсье: это — орехи. Наши, подземные. Ровно шесть штук. С виду все они одинаковы. Зато внутри у них разное число ядрышек. В двух — по одному, в двух — по два и в двух — по три. Три ореха — все с разным числом ядрышек — кладу в левый карман, три — в правый. Вам предлагается…

— Знаю, знаю, — забегает вперед Фило. — Мне предлагается вытащить один орешек и прикинуть, какова вероятность, что в нем окажутся, допустим, два зернышка.

— Ну-у-у, — разочарованно тянет Асмодей, — это уж для дошкольников! Мое условие куда интереснее. Слушайте меня внимательно, притом оба, потому что вам, мсье Мате, разрешается помогать своему напарнику. Как видите, я бес не БЕСсердечный… Так вот, пусть один из вас вытащит орех из правого кармана, а другой — из левого. А потом прикиньте, какова пробабилите… пардон, какова вероятность, что сумма ядрышек в этих орехах больше четырех.

Круглая физиономия Фило вытягивается. Нечего сказать, крепкий им достался орешек! На таком зубы сломаешь. Впрочем, как удачно выразился Асмодей, ноблесс оближ — положение обязывает… Что ж, начнем размышлять.

— Отставить! — командует Мате. — Прежде всего изобразим это графически. Так будет проще.

Он достает свой знаменитый потрепанный блокнот и начинает составлять таблицу, попутно объясняя принцип ее построения.



— Вот вам квадрат из девяти клеток. Над клетками верхней строки нарисуем те орехи, что лежат в правом кармане, вдоль клеток левого столбца — те, что в левом. А в клетках проставим суммы ядрышек, которые получим от всех возможных комбинаций. Берем, скажем, орешек с двумя ядрышками из правого кармана и с тремя из левого. Сколько в них всего ядрышек?

— Думаете, я и вправду дошкольник? — надувается Фило. — Конечно, пять.

— Прекрасно. Пишем пять в клетке, которая находится во втором столбце третьего ряда. Тем же способом заполняем все остальные клетки — и таблица готова.

— Ну и что? — шебаршится Фило. — Я и без вашей таблицы знаю, что здесь возможны только два варианта. Либо сумма ядрышек — пять, либо — шесть. Ведь нам надо, чтобы она была больше четырех.

— Верно, — соглашается Мате, — вариантов и в самом деле всего два. Зато возможных комбинаций — три. Взгляните на таблицу, и вы увидите, что число 5 встречается там дважды.

— Как так?

— Очень просто. Вы не учли, что можно вынуть орех с двумя ядрышками из правого кармана, а с тремя — из левого, и наоборот: с тремя — из правого, а с двумя — из левого.

— Милль пардон, оплошал! — шутливо извиняется Фило. — Ваша таблица и в самом деле очень наглядна. Прежде всего из нее следует, что комбинаций у нас всего девять. Из этих девяти лично нам подходят три. Стало быть, интересующая нас вероятность равна 3/9 или 1/3.

Широкая белозубая улыбка освещает смуглое лицо Асмодея. Тре бьен! Очень хорошо! Теперь мсье сам видит, что не так страшен черт, как его малюют. Более того, решив предложенную ему задачу, он остался в двойном — нет, даже в тройном выигрыше: а) уверовал в свои силы, б) закрепил вновь узнанное и в) проверил на собственном опыте теорему сложения вероятностей.

— Что-то не помню, чтобы я ее проверял, — хмурится Фило.

— Не помните, а ведь использовали! Вот скажите, почему вы решили, что вероятность равна трем девятым?

— Потому что вероятность каждой возможной комбинации в этом случае равна одной девятой.

— Но разве три девятых не сумма трех частных вероятностей?

— Верно! Как я сразу не догадался?

— Между прочим, ту же задачу можно решить и другим способом, — говорит Мате. — Какова вероятность, что в двух орешках окажется шесть зернышек?

— Что тут спрашивать! — фыркает Фило. — Само собой, одна девятая.

— А какова вероятность, что ядрышек будет пять?

— Две девятых.

— Сложите эти частные вероятности — и снова получите все те же три девятых.

Фило, однако, не выглядит слишком счастливым. Все это очень мило, но он с прискорбием убеждается, что пресловутая теорема ни на шаг не приблизила его к таинственному рецепту.

— Это потому, что вы сидите на месте, мсье, — поясняет Асмодей, — а вам, между прочим, надо искать.

Тот глубоко вздыхает. Спасибо за совет, но…

— Что-нибудь вам мешает, мсье? — услужливо допытывается черт.

— Мм… — Фило уклончиво рассматривает высокий сводчатый потолок. — Пожалуй, два обстоятельства. Во-первых, за́мок велик и тайников в нем, без сомнения, куда больше, чем вы полагаете. Тут искать — с ног собьешься, а я человек рыхлый, тучный…

— Понимаю, мсье. Стало быть, первое препятствие — лень. А второе?

— Совесть, — неожиданно резко отчеканивает толстяк, в упор глядя на Асмодея. — Да, да, сударь. Хозяйничать в чужих секретерах, знаете ли, не в моих правилах.

— Весьма похвально, мсье. Но что вы скажете на это?

Выхватив из кармана пожелтевшую бумажку, черт подносит ее к самому носу совестливого филоматика.

— Рецепт! Рецепт королевского паштета!

Фило вскакивает, но рука его, готовая схватить драгоценную запись, тотчас отдергивается, как от раскаленного утюга.

— Как вы это раздобыли? — спрашивает он упавшим голосом. — Неужели все-таки…

Перейти на страницу:

Все книги серии Искатели необычайных автографов

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука