Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Еще одно схожее и часто повторяемое возражение: «Данные не могут заменить человеческой интуиции». На самом деле это человеческая интуиция не может заменить данных. К интуиции мы прибегаем, когда не знаем фактов, а поскольку фактов часто не хватает, интуицией люди очень дорожат. Но если перед вами доказательства, разве вы станете их отрицать? Статистический анализ побеждает искателей талантов в бейсболе (это замечательно описано в книге Майкла Льюиса MoneyBall[32]), он превосходит знатоков в дегустации вин, и каждый день мы видим все новые примеры его способностей. Вследствие наплыва данных граница между доказательствами и интуицией очень быстро смещается, и, как при любой революции, въевшиеся привычки надо преодолеть. Если я эксперт по теме

X в компании Y
, мне, конечно не понравится, когда меня обойдет какой-то парень с данными. Есть профессиональная поговорка: «Слушай своих клиентов, а не HiPPO[33]». HiPPO — это «мнение самого высокооплачиваемого человека». Если вы хотите быть авторитетом и завтра, пользуйтесь данными, а не боритесь с ними.

«Ладно, — скажет кто-то. — Машинное обучение может находить статистические закономерности в данных, но оно никогда не откроет ничего серьезного, например законов Ньютона». Возможно, пока не откроет, но ручаюсь, в будущем все изменится. Если не брать истории про падающие яблоки, глубокие научные истины найти совсем не легко. Наука в своем развитии проходит через три этапа, которые можно назвать фазами Браге, Кеплера и Ньютона. В фазе Браге мы собираем много данных, как Тихо Браге, который ночь за ночью, год за годом кропотливо записывал положение планет. В фазе Кеплера мы подбираем к данным эмпирические законы: Кеплер это делал с движением планет. В фазе Ньютона мы открываем глубокие истины. Наука в значительной степени состоит из работы, подобной труду Браге и Кеплера, а ньютоновские проблески — редкость. Сегодня большие данные делают работу миллиардов Браге, а машинное обучение трудится, как миллионы Кеплеров. Если — будем надеяться — человечество еще ждут великие озарения, их с равной вероятностью могут породить и обучающиеся алгоритмы, и еще более занятые ученые будущего, и совместные усилия ученых и алгоритмов. (Конечно, Нобелевскую премию получат ученые, независимо от того, предложили они ключевые идеи или просто нажали на кнопку. У алгоритмов машинного обучения нет никаких амбиций.) В этой книге мы увидим, на что могут быть похожи эти алгоритмы, и порассуждаем о том, что они могут открыть — например, лекарство от рака. 

Верховный алгоритм — лиса или еж?

Нам надо рассмотреть еще одно потенциальное возражение против Верховного алгоритма. Наверное, самое серьезное. Его выдвигают не инженеры знаний и не рассерженные эксперты, а сами практики машинного обучения. На секунду поставив себя на их место, я мог бы сказать: «Послушайте, Верховный алгоритм совершенно не похож на мою повседневную работу! Я перепробовал сотни алгоритмов для каждой проблемы, и для разных задач лучше подходят разные алгоритмы. Разве может один заменить все это многообразие?»

На это я отвечу: вы правы. Но разве не лучше вместо сотен вариантов многих алгоритмов пробовать сотни вариантов одного-единственного? Если выяснить, что в каждом алгоритме важно, а что нет, найти у важных элементов общее и посмотреть, как они дополняют друг друга, можно сложить из них Верховный алгоритм. Именно этим мы и займемся на страницах этой книги или хотя бы попытаемся как можно ближе к этому подойти. Наверное, у вас, дорогой читатель, по мере чтения тоже возникнут какие-то идеи на этот счет.

Насколько сложен будет Верховный алгоритм? Тысячи строк кода? Миллионы? Мы пока не знаем, но в машинном обучении бывало, что простые алгоритмы чудесным образом побеждали очень замысловатые. В известном эпизоде книги The Sciences of the Artificial[34] пионер искусственного интеллекта и нобелевский лауреат Герберт Саймон просит представить себе муравья, который упорно бежит по пляжу к себе домой. Путь муравьишки сложен не потому, что сложен он сам, а потому что вокруг полно маленьких дюн, на которые надо взбираться, и гальки, которую приходится обегать. Попытки смоделировать муравья, запрограммировав все возможные пути, будут обречены на провал. Аналогично самое сложное в машинном обучении — это данные. Все, что должен сделать Верховный алгоритм, — усвоить их, поэтому не надо удивляться, если сам он окажется несложным. Человеческая рука проста: четыре пальца вместе плюс отведенный в сторону большой. И несмотря на это, рука может делать и использовать бесконечное разнообразие инструментов. Верховный алгоритм по отношению к алгоритмам — то же, что рука по отношению к карандашам, мечам, отверткам и вилкам.

Перейти на страницу:

Похожие книги

Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука
Справочник по параметрам BIOS
Справочник по параметрам BIOS

В справочнике в алфавитном порядке приведено описание большинства параметров современных BIOS. В краткой форме описаны большинство настроек BIOS, даны рекомендуемые значения для различных конфигураций компьютеров. Также рассказано, что представляет собой BIOS, какие типы BIOS существуют, как получить доступ к BIOS и обновлять ее.Кроме того, вы научитесь использовать различные функции BIOS, узнаете, как оптимизировать их с целью улучшения производительности и надежности системы.Для более глубокого понимания работы BIOS и детального рассмотрения ее функций рекомендуем обратиться к книге «Оптимизация BIOS. Полное руководство по всем параметрам BIOS и их настройкам» А. Вонга.Книга предназначена для всех пользователей компьютера – как начинающих, которые хотят научиться правильно и грамотно настроить свою машину, используя возможности BIOS, так и профессионалов, для которых книга окажется полезным справочником по всему многообразию настроек BIOS. Перевод: А. Осипов

Адриан Вонг

Зарубежная компьютерная, околокомпьютерная литература
Информатика: аппаратные средства персонального компьютера
Информатика: аппаратные средства персонального компьютера

Рассмотрены основы информатики и описаны современные аппаратные средства персонального компьютера. Сформулированы подходы к определению основных понятий в области информатики и раскрыто их содержание. Дана классификация современных аппаратных средств персонального компьютера и приведены их основные характеристики. Все основные положения иллюстрированы примерами, в которых при решении конкретных задач используются соответствующие программные средства.Рекомендуется для подготовки по дисциплине «Информатика». Для студентов, аспирантов, преподавателей вузов и всех интересующихся вопросами современных информационных технологий.

Владимир Николаевич Яшин

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT