Читаем Верховный алгоритм. Как машинное обучение изменит наш мир полностью

Так какое же минимальное содержание может иметь обучающийся алгоритм, чтобы оставаться полезным? Законы физики? В конце концов, все в этом мире им подчиняется (по крайней мере, мы так думаем), они породили эволюцию, а в ходе эволюции — головной мозг. Может быть, Верховный алгоритм и правда скрыт в законах физики, но, если это так, нам надо выразить его явно. Если просто подбрасывать законам физики данные, новых законов не получишь. На это можно посмотреть следующим образом: возможно, основная теория какой-то дисциплины — просто законы физики, облеченные в удобную для этой дисциплины форму. Но если это действительно так, нам нужен алгоритм, который найдет кратчайший путь из данных этой дисциплины к ее теории, и непонятно, смогут ли законы физики в этом помочь. Еще один аспект заключается в следующем: если бы законы физики были иными, Верховный алгоритм все равно во многих случаях смог бы их открыть. Математики любят говорить, что Бог может нарушать законы физики, но даже он не бросает вызов законам логики. Возможно, это так, но законы логики предназначены для дедукции, а нам нужно что-то подобное для индукции. 

Пять «племен» машинного обучения

Конечно, охоту за Верховным алгоритмом не надо начинать с нуля. У нас за плечами несколько десятилетий исследований машинного обучения, на которые можно опереться. Лучшие умы планеты посвятили свои жизни разработке обучающихся алгоритмов, а кто-то даже утверждает, что универсальный алгоритм уже у него в руках. Хотя мы стоим на плечах гигантов, такие заявления надо принимать с долей скептицизма, и тогда возникает вопрос: как понять, что Верховный алгоритм найден? Мы поймем это тогда, когда один и тот же обучающийся алгоритм, в котором допустимо только менять параметры, на основе минимальных исходных данных сможет научиться понимать видео и текст так же хорошо, как человек, сделает важные открытия в биологии, социологии и других науках. Очевидно, что по этим стандартам ни один алгоритм машинного обучения пока нельзя признать Верховным, даже в том маловероятном случае, что он уже найден.

Крайне важно понимать, что от Верховного алгоритма не требуется уметь с чистого листа решать новую задачу. Это, наверное, была бы слишком высокая планка для любого обучающегося алгоритма, и это, разумеется, совершенно не похоже на то, как работают сами люди. Например, язык не существует в вакууме, и мы не поймем фразу без знания мира, к которому она относится. Таким образом, когда Верховный алгоритм будет учиться читать, он может опираться на то, что до этого он уже научился видеть, слышать и управлять роботами. Точно так же ученый не просто вслепую подбирает модели к данным — чтобы решить проблему, он оперирует всеми знаниями в данной области. Делая открытия в биологии, Верховный алгоритм тоже сначала может прочитать всю литературу по предмету, какую пожелает, полагаясь на уже освоенный навык чтения. Верховный алгоритм — не просто пассивный потребитель данных. Он может взаимодействовать с окружающей средой и активно искать данные, которые ему нужны, как робот-ученый Адам, о котором мы упоминали выше, или просто ребенок, исследующий окружающий мир.

Поиски Верховного алгоритма сложны, но их оживляет соперничество разных научных школ, действующих в области машинного обучения. Важнейшие из них — символисты, коннекционисты, эволюционисты, байесовцы и аналогисты. У каждого «племени» есть набор фундаментальных постулатов и конкретная проблема, которая больше всего его волнует. «Племя» находит решение для этой проблемы в идеях союзных научных дисциплин, и у него есть верховный алгоритм, который воплощает это решение.

Для символистов интеллект сводится к манипулированию символами — так математики решают уравнения, заменяя одни выражения другими. Символисты понимают, что нельзя учиться с нуля: данные должны сопровождаться исходными знаниями. Они научились встраивать уже имеющееся знание в машинное обучение и на лету соединять фрагменты знания, чтобы решать новые задачи. Их верховный алгоритм — это обратная дедукция: она определяет недостающее для дедукции знание, а затем как можно в большей степени его обобщает.

Для коннекционистов обучение — то, чем занимается головной мозг, и поэтому они считают, что этот орган надо воспроизвести путем обратной инженерии. Мозг учится, корректируя силу соединений между нейронами, поэтому ключевая проблема — понять, какие соединения за какие ошибки отвечают, и соответствующим образом их изменить. Верховный алгоритм коннекционистов — метод обратного распространения ошибки, который сравнивает выходные данные системы с желаемыми, а потом последовательно, слой за слоем, меняет соединения между нейронами, чтобы сделать результат ближе к тому, что требуется.

Перейти на страницу:

Похожие книги

Исторические информационные системы: теория и практика
Исторические информационные системы: теория и практика

Исторические, или историко-ориентированные, информационные системы – значимый элемент информационной среды гуманитарных наук. Его выделение связано с развитием исторической информатики и историко-ориентированного подхода, формированием информационной среды, практикой создания исторических ресурсов.Книга содержит результаты исследования теоретических и прикладных проблем создания и внедрения историко-ориентированных информационных систем. Это первое комплексное исследование по данной тематике. Одни проблемы в книге рассматриваются впервые, другие – хотя и находили ранее отражение в литературе, но не изучались специально.Издание адресовано историкам, специалистам в области цифровой истории и цифровых гуманитарных наук, а также разработчикам цифровых ресурсов, содержащих исторический контент или ориентированных на использование в исторических исследованиях и образовании.В формате PDF A4 сохранен издательский макет.

Динара Амировна Гагарина , Надежда Георгиевна Поврозник , Сергей Иванович Корниенко

Зарубежная компьютерная, околокомпьютерная литература / Учебная и научная литература / Образование и наука
Справочник по параметрам BIOS
Справочник по параметрам BIOS

В справочнике в алфавитном порядке приведено описание большинства параметров современных BIOS. В краткой форме описаны большинство настроек BIOS, даны рекомендуемые значения для различных конфигураций компьютеров. Также рассказано, что представляет собой BIOS, какие типы BIOS существуют, как получить доступ к BIOS и обновлять ее.Кроме того, вы научитесь использовать различные функции BIOS, узнаете, как оптимизировать их с целью улучшения производительности и надежности системы.Для более глубокого понимания работы BIOS и детального рассмотрения ее функций рекомендуем обратиться к книге «Оптимизация BIOS. Полное руководство по всем параметрам BIOS и их настройкам» А. Вонга.Книга предназначена для всех пользователей компьютера – как начинающих, которые хотят научиться правильно и грамотно настроить свою машину, используя возможности BIOS, так и профессионалов, для которых книга окажется полезным справочником по всему многообразию настроек BIOS. Перевод: А. Осипов

Адриан Вонг

Зарубежная компьютерная, околокомпьютерная литература
Информатика: аппаратные средства персонального компьютера
Информатика: аппаратные средства персонального компьютера

Рассмотрены основы информатики и описаны современные аппаратные средства персонального компьютера. Сформулированы подходы к определению основных понятий в области информатики и раскрыто их содержание. Дана классификация современных аппаратных средств персонального компьютера и приведены их основные характеристики. Все основные положения иллюстрированы примерами, в которых при решении конкретных задач используются соответствующие программные средства.Рекомендуется для подготовки по дисциплине «Информатика». Для студентов, аспирантов, преподавателей вузов и всех интересующихся вопросами современных информационных технологий.

Владимир Николаевич Яшин

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT