Шаг 2
Проверьте, совпадут ли ваши ожидания с действительностью: проведите анализ переходного процесса (Transient Analysis) вашей цепи, а затем представьте графически полученные данные о полном напряжении и напряжении на активном сопротивлении. Установки: Final Time — 600 мкс, Step Ceiling — 200 нс (рис. 6.2).Как вы того и ожидали, после короткого переходного процесса полное входное напряжение находится на активном сопротивлении R1
. Теория в очередной раз подтверждается. К сожалению, изображая кривые обоих напряжений, программа PROBE не использовала для этого всю рабочую поверхность экрана сверху донизу. Но вы можете внести в изображение соответствующие изменения, так как программа PROBE позволяет пользователю самому определять масштаб координатных осей.Шаг 3
Для этого откройте в PROBE меню Plot, в котором содержатся опции, позволяющие вносить изменения в графическое отображение результатов моделирования (рис. 6.3).Шаг 4
Выберите опцию Y Axis Settings…, после чего откроется одноименное окно, показанное на рис. 6.4.Шаг 5
Измените изображаемый в PROBE интервал, отметив в разделе Data Range (Диапазон данных) опцию User Defined (Определяемый пользователем), при этом опция Auto Range (Автоматически выбирать диапазон) будет деактивизирована. Затем задайте диапазон значений от -1 В до 1 В. Тем самым вы приведете в соответствие изображаемый в PROBE интервал с имеющимися у вас значениями напряжений. Закройте окно Y Axis Settings, щелкнув по кнопке OK, и оцените изменения, произошедшие на вашей диаграмме. Теперь она должна выглядеть так, как это показано на рис. 6.5: изменение масштаба оси Y позволило развернуть диаграмму на весь экран.Теперь диаграмма отображается на экране наиболее оптимально. Для большей наглядности к кривым, представленным на рис. 6.5, в качестве нулевой линии стоит добавить потенциал точки «земли» V(0), который вы можете найти в списке диаграмм в окне Add Traces
.6.2. Применение математических к результатам моделирования
Теперь вам, естественно, хотелось бы графически представить в PROBE напряжения на катушке UL
и конденсаторе UC. Но как можно отобразить эти напряжения, если PROBE рассчитывает только узловые потенциалы, то есть напряжения по отношению к «земле»? PROBE предлагает вам очень изящное решение данной проблемы. Вы наверняка помните правую часть окна Add Traces, где было перечислено целое множество математических операций. Любые из этих операций можно использовать применительно к величинам, содержащимся в левой части окна Add Traces. Такая операция, как «минус», позволяет, например, вычислить напряжение как разницу двух потенциалов.Шаг 6
Для вычисления напряжения на конденсаторе (UL) откройте окно Add Traces и найдите в списке диаграмм названия двух необходимых узловых потенциалов.Шаг 7
Чтобы получить разность двух потенциалов, щелкните мышью поочередно по строкам V(L1:1) и V(L1:2). Таким образом, обозначения обоих потенциалов будут один за другим отправлены в строку Trace Expression. Теперь вам остается только поставить между ними знак «минус» (рис. 6.6). Вы можете сделать это, нажав клавишу «минус» на своей клавиатуре либо щелкнув по соответствующему значку в правой части окна Add Traces.Шаг 8
Подтвердите ввод в строке Trace Expression щелчком по кнопке OK и будьте готовы приятно удивиться: на экране появится тот же RLC-контур, что и на рис. 6.1. Он находится в электрическом резонансе. R1=1 кОм: полное напряжение и напряжения на активном сопротивлении R, и на катушке L1 (рис. 6.7).Напряжение на катушке опережает ток на 90° и имеет амплитуду, соответствующую 2/3 входного напряжения. Для того чтобы вам было легче разобраться в диаграмме, напечатанной в черно-белом цвете, мы снабдили отдельные кривые специальными символами, позволяющими отличать их друг от друга. Вы помните, что эти символы можно активизировать через меню PROBE Tools→Options…→Use Symbols→Always
.Аналогично тому, как вы создали диаграмму напряжения на катушке, представьте теперь графически и напряжение на конденсаторе.