Именно сочетанием поиска практических инноваций в краткосрочной перспективе с намного более амбициозным стремлением создать машинный интеллект подлинно человеческого уровня характеризуется философия исследования разнообразных команд, работающих над ИИ в Google. Джефф Дин, директор компании по искусственному интеллекту, сказал мне, что если DeepMind, независимая компания, приобретенная Google в 2014 году, занимается поиском путей создания универсального машинного интеллекта по «структурированному плану», то другие исследовательские группы в Google придерживаются «более органического» подхода и заняты задачами, «важность которых мы осознаем, но пока не умеем их решать; когда же мы с ними справимся, то поймем, чем заняться дальше». Все группы по исследованию ИИ в Google, по его словам, «работают совместно, пытаясь создать по-настоящему гибкие ИИ-системы»[155]
. Лишь время покажет, какой подход эффективнее: четкое планирование сверху вниз или пошаговое исследование неизведанного, но на обоих направлениях вероятно появление новых идей, которые можно будет использовать на практике.У каждой команды, возглавляющей движение по этим путям, своя философия исследований и преодоления трудностей. Общим для всех них является то, что конечные цели «срисованы» со способностей, характерных для человеческого мышления.
Один из подходов состоит в использовании в качестве образца внутренней организации и работы человеческого головного мозга. Его сторонники считают, что искусственный интеллект должен напрямую обращаться к опыту нейробиологии. Лидером в этой области является DeepMind. Основатель и генеральный директор этой компании Демис Хассабис — что необычно для исследователя ИИ — получил высшее образование в области нейробиологии, а не вычислительной техники и защитил докторскую диссертацию в лондонском Юниверсити-колледже. Хассабис сказал мне, что самая большая группа исследователей в DeepMind состоит из специалистов по нейробиологии, занятых поиском способов применения новейших открытий науки о мозге в создании искусственного интеллекта[156]
.Их задача не детальное копирование работы мозга, а использование базовых принципов его функционирования как отправной точки. Для объяснения этого подхода эксперты в области ИИ часто приводят аналогию с изучением механики полета и последующей разработкой конструкций современных самолетов. Хотя очевидно, что источником вдохновения для создания самолетов послужили птицы, самолеты не машут крыльями и не повторяют напрямую полет птицы. Когда инженеры разобрались в аэродинамике их полета, стало возможно строить машины на основе тех же базовых принципов, но намного более совершенные. Хассабис и команда из DeepMind верят в существование своего рода «аэродинамики интеллекта» — основополагающей теории, описывающей человеческий и, в перспективе, машинный интеллект.
Междисциплинарная команда DeepMind привела несколько убедительных свидетельств того, что подобный общий комплекс принципов действительно может существовать, опубликовав в мае 2018 года результаты своего исследования. Четырьмя годами раньше Нобелевская премия в области физиологии или медицины была вручена трем нейробиологам — Джону О’Кифу, Мэй-Бритт Мозер и Эдварду Мозеру — за открытие особого типа нейрона, обусловливающего ориентацию в пространстве у животных. Эти нервные клетки, названные нейронами решетки, возбуждаются, образуя регулярную гексагональную структуру, в процессе исследования животным пространства. Считается, что нейроны решетки составляют нечто вроде «внутреннего GPS», нейронного представления системы картирования, что позволяет животным ориентироваться в пространстве, прокладывая маршрут в сложном и непредсказуемом окружении.