Читаем Вначале была аксиома. Гильберт. Основания математики полностью

при условии, что сумма различных коэффициентов в квадрате конечна, то есть

x2p .

p=1

Таким образом, при переходе из царства непрерывного в царство дискретного интеграл преобразуется в сумму (аналогичную операцию).

Пространство всех последовательностей действительных чисел суммируемого квадрата (сегодня обозначаемое l

2), где нужно искать решение, — это и есть гильбертово пространство. В этом пространстве числовых последовательностей, по аналогии с обычным евклидовым пространством, Гильберт определил расстояние и распространил на него классические понятия предела, непрерывности и так далее. Как Гильберт, так и его лучшие ученики (в особенности Эрхард Шмидт) досконально исследовали это геометрическое сходство функционального пространства l2 с обычным геометрическим пространством R". Вся теория о гильбертовых пространствах способствовала выходу на сцену первого известного пространства с бесконечным числом измерений в его каноническом представлении об l2.

Эти годы были решающими, прежде чем появилась возможность общего анализа пространств функций. В 1906 году увидела свет докторская диссертация Мориса Фреше (1878— 1973), которая имела огромное влияние, поскольку в ней в абстрактном виде было введено понятие расстояния во множестве функций, а также остальные связанные геометрические понятия.

Через некоторое время, в 1907 году, два молодых математика — бывший ученик Минковского Эрнст Фишер (1875-1954) и Фридьеш Рис (1880-1956), в ту пору учитель средней школы из венгерского городка, — независимо друг от друга открыли неожиданную связь между расцветающим функциональным анализом и другим великим математическим открытием того времени — теорией интегрирования Анри Лебега (1875-1941), которая была призвана залатать прорехи классических теорий интегрирования Коши и Римана. Теорема Фишера — Риса гласит, что существует соответствие, или изоморфизм, между пространством Гильберта l2 и пространством функций интегрируемого квадрата (которое сегодня мы называем L2

). В одночасье родилась вторая модель гильбертова пространства. Эти работы позволили ввести новые функциональные пространства, такие как обобщение уже известных: пространств lр и Lp при р 1 (например, если р = 3, пространство последовательностей/функций суммируемого/интегрируемого куба, и так далее).


Групповой портрет. Слева направо: Альфред Хаар, сын Гильберта Франц, его неразлучный друг Герман Минковский, неизвестная женщина, Кёте Г ильберт, Давид Гильберт и Эрнст Хеллингер.

Эйнштейн в гостях у Лоренца в Лондоне в 1921 году. Для установления теории относительности немецкий физик воспользовался работой Лоренца и Пуанкаре, а также математической помощью Г ильберта.

Джон фон Нейман, ученик Гильберта, который дал имя своего учителя гильбертову пространству.



Официально функциональный анализ был введен в 1922 году, когда вышла из печати книга «Лекции по функциональному анализу» Поля Леви (1886-1971). В том же году была опубликована докторская диссертация поляка Стефана Банаха (1892-1945), в которой тот стремился доказать ряд теорем, справедливых для различных функциональных пространств, не останавливаясь на конкретной природе этих пространств (на конкретных функциях, которые входят в их состав).

Любопытно, что многие открытия Банаха в области функционального анализа были сделаны в шуме «Шотландского кафе» во Львове (в то время считавшемся территорией Польши), где он нацарапывал заметки на мраморной крышке стола или на салфетке. Результатом этих заметок Банаха и других известных математиков, его компаньонов, стала «Шотландская книга» — один из самых важных математических документов XX века.



КВАНТЫ, МАТРИЦЫ И ВОЛНЫ

После тысячи и одной неудачной попытки объяснить излучения черного тела (то есть тела, находящегося в закрытой полости) немецкому физику Максу Планку (1858-1947) наконец это удалось. Он заявил, что излучение и поглощение энергии всегда происходит пучками, в прерывистом, или «квантизованном», виде. Энергия, как и деньги, не принимает значения внутри непрерывного диапазона, а только в дискретных единицах. «Дискретизация», объявленная Планком, была настоящим актом отчаяния. Рождение квантовой теории относится к 14 декабря 1900 года, когда его закон об излучении черного тела был представлен публично.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука