— Дело в том, — продолжал Радикс, — что если тебе, допустим, придет в голову точно определить, как можно вывести общие формулы, определяющие значения неизвестных в зависимости от коэффициентов в уравнениях, то придется заняться тем же самым, чем мы сейчас с тобой забавлялись, а именно — подсчитать число инверсий. Если не струсишь, то советую проверить это. Давай напишем систему уравнений:
и найдем, чему равняется
— Это что-то трудновато, — неопределенно заметил Илюша.
— Для простоты положим, что
— 110 —
Илюша взял карандаш, задумался на минутку и написал следующее выражение для
— Очень мило! Ну, а еще чего-нибудь ты не придумаешь?
— Можно подставить это значение
— Можно. А далее?
— А далее поступаю подобным же образом. Определю из одного из уравнений
Все определится очень просто. Только бы не запутаться во всех этих подстановках.
— Так, — закончил Радикс, — верно. Придется тебе еще подумать, кстати, о том, чтобы у этих твоих дробей, которые определяют неизвестные, знаменатели не обращались в нуль.
Но если оставить это пока в стороне, то формулы ты получишь верные. О них-то я и хотел тебе сказать несколько слов.
Займись-ка, выпиши, что получается окончательно в знаменателе дробей. Если ты нигде не напутал, то получится алгебраическая сумма произведений:
А что касается знаков перед ними, то они как раз тем и определяются, какое число инверсий, четное или нечетное, образуют числа «один», «два» и «три» в подписных значках у букв
— 111 —
— Теперь уже я буду относиться к Дразнилке посерьезнее. Вот какая он, оказывается, знатная персона!
— Кстати, — задумчиво произнес Радикс. — Ты, кажется, уверял меня по поводу младшего Дразнилки, что из трех элементов можно образовать всего шесть комбинаций?
— Разумеется, — уверенно ответил Илюша.
— Как это мило!.. — еще более задумчиво произнес его приятель. — И ты уверен, что больше шести не может быть?
— Конечно, уверен!
— Так, значит, шесть! И все разные. Это очень важно. Ровно шесть, говоришь ты?.. Это приводит мне на память один престранный случай. В архиве одного нотариуса города Толедо, в Испании, была обнаружена следующая запись, относящаяся к началу восемнадцатого столетия:
«После кончины достопочтенного дона Диего дель Кастильо в его доме было найдено завещание, согласно которому три драгоценных ларчика — бронзовый, серебряный и золотой — были оставлены трем его друзьям юности: дону Альваро, дону Бенито и дону Висенте, причем условие завещания гласило:
«Означенные предметы переходят во владение моих друзей по их выбору, который должен происходить в следующем порядке:
1) тот, кто видел меня в зеленом плаще, не может выбирать раньше дона Альваро;
2) если дон Висенте не был в Саламанке в тысяча шестьсот девяносто четвертом году, то, значит, тот, кто будет выбирать первым, никогда не давал мне своей табакерки;
3) дон Альваро и дон Бенито могут выбирать во вторую очередь только в том случае, если дон Бенито будет выбирать раньше того, кто первый стал носить шпагу…»