К мотивам, способствующим развитию личности, относятся также вопросы, связанные с понятием бесконечности. Ввести в эту проблематику может изображение перспективы, а также знакомство с понятием предельных значений и с элементами теории множеств Георга Кантора. Есть ли на прямой ещё точки, кроме чисел? Как это прямая или кривая «состоит» из точек? Вопросы о «бесконечно больших» и «бесконечно малых» величинах восходят к парадоксу, сформулированному 2500 лет назад Зеноном.
В тесной связи с этой главой осваивается и углубляется понятие функции как инструмента причинно-следственного мышления, которое было разработано Галилеем, Ньютоном, Лейбницем и другими. В значительной степени обобщаются понятия скорости и ускорения; становятся возможными определения максимальных и минимальных значений, что позже в виде вариационного исчисления внесло свой вклад в нынешнее техническое совершенство.
Изучение понятия бесконечности и учения о функциях приводит к абстрагированию мышления по мере того, как проблемы удаляются от области чувственно-наглядного. Совершенно не исключено, что некоторым учащимся в этих разделах придется довольствоваться общей ориентацией и некими простыми основными понятиями. У других может появиться даже отвращение к этим х-у-z в уравнениях. Они смогут снова обрести интерес только благодаря конструктивным задачам, например, в такой важной области как проективная геометрия. Группа французских математиков (Понселе, Брианшон, Карно и другие ученики великого начертательного геометра Монжа) в начале XIX века увлекалась чисто геометрическими методами и настаивала на том, что с их помощью можно сделать намного больше, чем с помощью не наглядных уравнений аналитической геометрии. Карно хотел «освободить геометрию от иероглифов анализа».
Так в течение XIX века развивалась проективная геометрия. Она дает учителю отличный материал. Удивительно, почему общеобразовательные школы не включают ее в программу более широко. Проективная геометрия дает учащимся чрезвычайно хорошие возможности рассматривать различные проблемы и связи как образно, так и буквально под различными углами зрения. Наряду с обычной атомистической трактовкой, согласно которой плоскость или линия состоят из точек, проективная геометрия дает и обратный образ, рассматривая точку как несущую в себе плоскости или прямые. Плоскость и прямая, таким образом, равно как и точка, могут рассматриваться как первичные однородные элементы. Кто испытал на себе, что молодые люди любую ситуацию зачастую видят только в черно-белых тонах (причем глубоко в этом убеждены), должны видеть важную задачу школы в том, чтобы научить учеников вырабатывать образные суждения. Не в последнюю очередь благодаря рассмотрению проблем и вещей под самыми разными углами, а лучше всего с нескольких диаметрально противоположных точек зрения. Для этой цели великолепно подходит проективная геометрия, она дает интересное поле деятельности для всех учеников. Основы проективной геометрии заложил в XVII веке французский математик Дезарг. При этом он пытался решить проблемы, которые поставили перед ним художники, т.е. «профаны», искавшие методы строгого построения перспективы рисунка. «Наука, созданная Дезаргом, до сих пор является одной из красивейших областей математики, может быть, потому, что в свое время она вышла из лона искусства»,- пишет Моррис Клейн в своей работе «Математика в западной культуре».
Если мы хотим услышать и понять друг друга в нашей повседневной жизни, если мы стремимся к пониманию определенных результатов научного исследования, то мы должны уяснить себе и другим, какие основные представления лежат в основе нашей системы взглядов. В науке на переднем плане всегда стоит вопрос: какая аксиома или феномен положены в основу? Мы всегда стремимся к тому, чтобы как можно более объективно увидеть, что происходит в поле наших исследований, — будь то природный процесс, эксперимент, психологическое или историческое событие. В двенадцатом классе вальдорфской школы ученики получают обширные обзоры по разным предметам. В математике, например, мы видим, как при умелом выборе разных наборов аксиом возникают разные геометрии (эвклидова, неэвклидова, аналитическая, синтетическая и т. д.) или алгебры ("необычная" алгебра, булева алгебра, векторная алгебра и т. д.). Т.е. каждый исследователь выбирает адекватный инструмент. Можно сказать: дело выбирает проблему. Ученики знакомятся в этой связи с примерами того, как некая математическая работа долгое время рассматривалась всего лишь в качестве «литературы», и даже относилась к разряду курьезов, и вдруг доказывала свою незаменимость во многих областях (алгебра Буля для логического анализа, теории вероятностей и теории электрических сетей).