Из всех жаропрочных металлов самое большое внимание конструкторов и металлургов западных стран привлекает молибден. Технология его получения в настоящее время разработана лучше, чем технология получения других тугоплавких металлов. Молибденовые сплавы обладают многими качествами, необходимыми для работы в условиях высоких температур.
Известно [24], что уже сейчас молибден и его сплавы имеют промышленное значение и идут на изготовление листов, пластин, полос, проволоки и труб. Стоит молибден в США значительно дешевле, чем другие тугоплавкие металлы.
Однако технология изготовления деталей из молибдена вое еще несовершенна.
Кроме того, подобно большинству других жаропрочных металлов, молибден заметно окисляется уже при температуре 800 °C. Окислы молибдена летучи. Поэтому при длительном высокотемпературном нагревании деталь, изготовленная из молибдена, буквально тает на глазах — испаряется.
Сильная окисляемость молибдена при высоких температурах является самым серьезным препятствием для использования этого металла при постройке носовых конусов ракет, возвращаемых в атмосферу Земли. Поэтому на Западе усиленно разрабатываются способы защиты поверхности молибденовых деталей от окисления.
Молибден без защитных покрытий используют для изготовления сопел ракетных двигателей и других деталей, рассчитанных на короткий срок службы при температурах около 220 °C.
Большое внимание специалисты уделяют вольфраму. Из всех известных металлов он обладает самой высокой температурой плавления-341 °C. Чтобы вольфрам расплавился, нужна температура, лишь в два раза меньшая, чем температура поверхности Солнца.
Из этого металла долгое время вытягивали лишь нити для ламп накаливания, и только сравнительно недавно были разработаны приемлемые способы прокатки и литья деталей из вольфрама [24]. Огромная прочность этого металла сильно затрудняет обработку вольфрамовых деталей.
Вольфрам имеет большой удельный вес. Он в 7 раз тяжелее алюминия и в II раз тяжелее бериллия. Если обшивку корабля сделать из вольфрама, то стартовый вес космического корабля значительно возрастет.
Конечно, список материалов космической техники не ограничивается только пятью тугоплавкими элементами. Для будущих спутников и межпланетных кораблей потребуются сплавы, защищающие человека от космического облучения. Для ажурных и в то же время прочных конструкций космических аппаратов потребуются сплавы, в несколько раз более прочные, чем существующие ныне. Новые научные открытия в физике твердого тела, в металлургии и технологии металлов приводят к созданию новых материалов космической техники. Это будут, очевидно, очень теплоемкие материалы с весьма низкой теплопроводностью, самовозгоняющиеся «жертвенные» пластмассы и т. п.
Сверхогнеупорные материалы
Все тугоплавкие металлы имеют существенный недостаток: при высоких температурах они начинают быстро разрушаться в результате окисления. При этом образуется порошкообразное вещество, напоминающее скорее соль, чем металл. Это окислы.
Но окислы многих металлов чрезвычайно огнестойки. Они больше уже не окисляются при нагреве и плавятся при весьма высоких температурах. Так, например, алюминий плавится при температуре 668 °C, а окись алюминия — при 205 °C; окись бериллия становится жидкой при 250 °C, в то время как металл бериллий — при 1315 °C. Металл цирконий расплавляется при температуре 185 °C, а его окись-при 295 °C.
Еще более тугоплавки соединения металлов с углеродом, называемые карбидами. Карбид ниобия плавится при температуре 350 °C, циркония-при 355 °C, а тантала-при 415 °C.
Материалы космической техники, кроме тугоплавкости, должны обладать рядом других качеств, прежде всего пластичностью. Именно благодаря пластичности изделие не разрушается при тепловом ударе, т, е. при сверхбыстром нагреве в момент входа летательного аппарата в атмосферу Земли.
Однако пластичность окислов и карбидов металлов очень низкая. Эти хрупкие материалы, содержащие в основном окислы металлов и другие химические соединения, называются керамическими материалами, или просто керамикой.
Все керамические материалы-плохие проводники тепла. Используя эту особенность керамики, специалисты ряда стран уже теперь применяют ее для защиты важных узлов ракеты от перегрева. Слоем сверхогнеупорной керамики, как защитной рубашкой, не пропускающей тепло, покрываются сопла реактивных двигателей [26]. Теплоизолирующие покрытия будут защищать основную металлическую конструкцию от интенсивного окисления, сохранять ее прочность.