Читаем Все обо всем. Том 4 полностью

Галилей провел в своей лаборатории множество опытов с падающими телами. На основании этих экспериментов он вывел этот закон: в безвоздушном пространстве скорость падающего тела зависит только от высоты падения и не зависит он его массы. Чем дольше тело находится в свободном падении, тем быстрее оно движется. Когда какое-нибудь тело увеличивает скорость, мы говорим, что оно получило ускорение. Ускорение свободно падающего тела равняется 9,8 метрам в секунду. Это означает, что за каждую секунду падения тело увеличивает скорость своего падения примерно на десять метров в секунду.

После первой секунды падающее тело имеет скорость 9,8 метров в секунду. После первых двух секунд его скорость становится 9,8 плюс 9,8 метров, то 19,6 метров в секунду и так далее. Проходя через слой воздуха, падающее тело не может набирать скорость в такой прогрессии. Оно может набрать лишь определенную скорость. В виду сопротивления воздуха существует предел скорости падающего предмета. Это истинно даже для самых тяжелых предметов. Они получают ускорение при начале падения, но одновременно наращивается и сопротивление воздуха. Вскоре оно уравновешивает силу гравитации. С этого момента ускорение падения тела перестает нарастать. Оно достигает своей «конечной скорости» и не изменяется до конца падения.

Что заставляет воздушный шар подниматься ввысь?

Воздушный шар — это самый простой воздухоплавательный аппарат. Обычно он состоит из легкого сферического или цилиндрического «мешка», сделанного из бумаги, резины, шелка или прорезиненного материала, содержащего внутри горячий воздух, водород или гелий. К шару может быть прикреплена при помощи веревок или сетки корзина, или гондола, в которой перевозят пассажиров и грузы. Шар плавает в воздухе по той же причине, по которой рыба плавает в воде. Каждый из них вытесняет из воды или воздуха, окружающих их, массу больше их собственной.

Пока шар и его снаряжение весят меньше, чем вытесненный воздух, он будет подниматься. Если он потеряет какую-то часть поднимающего его газа и его масса увеличится, он начнет падать. В качестве поднимающего газа используют горячий воздух, водород или гелий, потому что все они легче обычного атмосферного воздуха. Отпущенный на свободу шар будет подниматься до тех пор, пока вес вытесняемого воздуха не уравняется с его собственным.

Чтобы изменить высоту полета, воздухоплаватель должен либо уменьшить поднимающие его силы, чтобы опуститься, либо уменьшить его вес, чтобы подняться. Чтобы спуститься, он должен выпустить немного газа через клапан наверху шара. Чтобы подняться выше, он должен выкинуть за борт часть груза (балласта). Поскольку ни балласт, ни газ нельзя восполнить во время полета, очевидно, что возможности воздухоплавателя управлять полетом шара сильно ограничены. В лучшем случае он может опускаться и подниматься лишь более или менее короткий промежуток времени, в зависимости от величины шара.

Поднявшись ввысь, шар попадает в полную зависимость от ветров. В полете шаром практически невозможно направлять. Он может лишь плыть по ветру, и по этой причине от него очень мало пользы как от транспортного средства. В наши дни воздушные шары в основном используются для исследования верхних слоев атмосферы. Во время войны они использовались как воздушные пункты наблюдения, а также из них сооружали своего рода воздушные заграждения (нечто вроде воздушных заборов) для защиты городов от налетов бомбардировщиков.

Кака эроплан поднимается в воздух?

Чтобы понять это, мы сначала должны разобраться в том, какие силы позволяют самолету держаться в воздухе. Так как самолет весит больше, чем такой же объем воздуха, ему требуется сила, поддерживающая его в воздухе. Она называется силой подъема. Самолет развивает эту силу, стремительно двигаясь вперед и преодолевая сопротивление воздуха. Почему это движение создает подъемную силу? Благодаря тому, что в процессе его воздушные массы обтекают крылья. Воздух, рассеченный аэропланом, проходит над и под крыльями. Та его часть, что проходит под крыльям, толкает самолет вверх. Крыло имеет выпуклую форму на верхней стороне, и воздух, огибая эту выпуклость, в этих точках создает зону пониженного давления.

Таким образом, возникают две силы, действующие одновременно: воздух под крыльями толкает самолет вверх, а пониженное давление над крыльями способствует этому движению. В результате получаетсяподъем. Чтобы двигаться вперед, самолету требуется сила двигателя. Пропеллеры ввинчиваются в толщу воздуха точно так, как шуруп — в дерево. Этот эффект становится возможен благодаря тому, что воздух при быстром движении сквозь него, равно как и при быстром движении самого воздуха, начинает действовать как плотная среда. Это движение вперед называется тягой. Тяга преодолевает сопротивление воздуха, подъемная сила — силу гравитации — и самолет летит по воздуху. Пока подъемная сила уравновешивает силы гравитации, самолет движется все прямо на одном и том же уровне.

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 знаменитых катастроф
100 знаменитых катастроф

Хорошо читать о наводнениях и лавинах, землетрясениях, извержениях вулканов, смерчах и цунами, сидя дома в удобном кресле, на территории, где земля никогда не дрожала и не уходила из-под ног, вдали от рушащихся гор и опасных рек. При этом скупые цифры статистики – «число жертв природных катастроф составляет за последние 100 лет 16 тысяч ежегодно», – остаются просто абстрактными цифрами. Ждать, пока наступят чрезвычайные ситуации, чтобы потом в борьбе с ними убедиться лишь в одном – слишком поздно, – вот стиль современной жизни. Пример тому – цунами 2004 года, превратившее райское побережье юго-восточной Азии в «морг под открытым небом». Помимо того, что природа приготовила человечеству немало смертельных ловушек, человек и сам, двигая прогресс, роет себе яму. Не удовлетворяясь природными ядами, ученые синтезировали еще 7 миллионов искусственных. Мегаполисы, выделяющие в атмосферу загрязняющие вещества, взрывы, аварии, кораблекрушения, пожары, катастрофы в воздухе, многочисленные болезни – плата за человеческую недальновидность.Достоверные рассказы о 100 самых известных в мире катастрофах, которые вы найдете в этой книге, не только потрясают своей трагичностью, но и заставляют задуматься над тем, как уберечься от слепой стихии и избежать непредсказуемых последствий технической революции, чтобы слова французского ученого Ламарка, написанные им два столетия назад: «Назначение человека как бы заключается в том, чтобы уничтожить свой род, предварительно сделав земной шар непригодным для обитания», – остались лишь словами.

Александр Павлович Ильченко , Валентина Марковна Скляренко , Геннадий Владиславович Щербак , Оксана Юрьевна Очкурова , Ольга Ярополковна Исаенко

Публицистика / История / Энциклопедии / Образование и наука / Словари и Энциклопедии