Бóльшая часть сверхновых с коллапсом ядра приводит к образованию нейтронных звезд. Современный темп рождения нейтронных звезд в нашей Галактике составляет примерно 2–3 объекта за 100 лет, так что за время жизни Галактики в ней образовалось несколько сотен миллионов нейтронных звезд. Примерно половина из них покинула Галактику из-за больших начальных скоростей, связанных со взрывами сверхновых и/или распадами тесных двойных систем, в которые входили прародители нейтронных звезд.
Нейтронные звезды наблюдаются как астрономические источники разных типов. Наиболее многочисленными и известными являются радиопульсары. На момент написания книги (2017 г.) их известно более 2500, а в скором времени это число существенно возрастет благодаря работе новых радиотелескопов.
Лев Ландау предположил существование объекта звездной массы с плотностью порядка ядерной. Вальтер Бааде и Фриц Цвикки предсказали рождение нейтронных звезд в результате вспышек сверхновых.
Нейтронные звезды были открыты в 1967 г. как радиопульсары. Открытие было неожиданным: несмотря на то что в целом многие свойства нейтронных звезд были правильно описаны теоретиками до их обнаружения, мощное пульсирующее радиоизлучение предсказано не было. Основной вклад в открытие внесла Джоселин Белл (Jocelyn Bell). В основном за этот результат ее научный руководитель Энтони Хьюиш (Antony Hewish) получил Нобелевскую премию по физике (то, что сама Белл не была включена в список лауреатов, считается одной из самых крупных ошибок в истории Нобелевских премий по физике).
Джоселин Белл и Энтони Хьюиш в 1967 г. открыли радиопульсары.
Интервал между последовательными импульсами радиопульсара – это период вращения нейтронной звезды (иногда за оборот наблюдают два импульса от обоих магнитных полюсов, соответственно, интервал между импульсами равен половине оборота). Механизм радиоизлучения пульсаров до конца не ясен, хотя понятно, что речь идет о когерентном излучении, рождающемся в магнитосферах нейтронных звезд. Многие пульсары наблюдаются и в других диапазонах (некоторые – во всех: от радио- до гамма-). Рентгеновское излучение пульсаров с коротким периодом позволяет сделать их прекрасными ориентирами для систем независимой навигации межпланетных станций (такие системы называют XNAV, X-ray pulsar-based navigation and timing). Первые космические аппараты, тестирующие эту технологию, уже находятся на орбите – это китайский спутник XPNAV-1, а также демонстрационная система SEXTANT (Station Explorer for X-ray Timing and Navigation Technology) в составе инструмента NICER (Neutron star Interior Composition Explorer) на борту Международной космической станции (МКС).
Кроме этого, одиночные нейтронные звезды наблюдаются как молодые остывающие объекты, магнитары и источники других типов. Также большое количество нейтронных звезд (сотни источников) можно видеть в тесных двойных системах благодаря аккреции. Рентгеновские источники этого типа были обнаружены на несколько лет раньше радиопульсаров, в 1962 г., благодаря работе Риккардо Джиаккони (Riccardo Giacconi) и его коллег. Однако доказать присутствие в этих рентгеновских источниках именно нейтронных звезд удалось лишь в начале 1970-х гг.
Активность ряда нейтронных звезд связана с выделением энергии магнитного поля (токов). Самый яркий пример – магнитары.
Нейтронные звезды обладают рядом экстремальных свойств, что делает их крайне интересными объектами с точки зрения фундаментальной физики. Вещество в нейтронных звездах находится в условиях, которые недостижимы в земных лабораториях: сверхсильная гравитация на поверхности, сверхсильные магнитные поля и сверхвысокая плотность в недрах.
Из всех наблюдаемых объектов (за исключением черных дыр) нейтронные звезды наиболее компактны, их радиус наиболее близок к шварцшильдовскому радиусу (радиус невращающейся черной дыры для данной массы, см. раздел 7.1 «Природа черных дыр. Коллапс»). Так называемая вторая космическая скорость (скорость убегания) на поверхности нейтронной звезды составляет примерно 0,3 скорости света. Если масса нейтронной звезды превышает предельную (около 2,5 массы Cолнца), происходит коллапс в черную дыру. Для расчета структуры и многих свойств нейтронных звезд необходим учет эффектов общей теории относительности.
Известные нейтронные звезды обладают сильными магнитными полями: от 108
до 1015 Гс (для сравнения: поле на магнитном полюсе Земли составляет менее 1 Гс). Большая величина поля частично достигается сохранением магнитного потока при сжатии ядра звезды, порождающей компактный объект, а частично связана с генерацией поля.