Читаем Вселенная погибнет от холода. Больцман. Термодинамика и энтропия. полностью

где обозначает приращение, S — энтропию, Q — тепло, а Т — температуру. То есть увеличение энтропии пропорционально увеличению тепла и обратно пропорционально температуре системы. Клаузиус выяснил, что если сложить все малые приращения энтропии S во время полного цикла Карно, то общий результат будет равен нулю: система получает столько же энтропии при нагревании, сколько теряет при охлаждении, что можно выразить как

циклS = циклQ/T = Q.

где символ обозначает сумму. Но двигатель Карно — это идеализированный двигатель, имеющий максимальную эффективность. У реального двигателя будут потери, следовательно, в конце любого процесса окажется, что приращение энтропии положительно, то есть

S >= 0,

что соответствует второму принципу термодинамики. На языке анализа бесконечно малых, когда приращение энтропии S становится очень маленьким, оно заменяется выражением dS, где буква d — "дифференциал" и обозначает бесконечно малое приращение. Точно так же суммы заменяются интегралами, которые обозначаются символом . Когда интеграл берется для замкнутого цикла, символ заменяется на , где круг обозначает возвращение к отправной точке. На языке дифференциального исчисления выражение энтропии выглядит следующим образом:

dS = dQ/T.

а тот факт, что ее приращение равно нулю в цикле Карно, выражается так:

dS = dQ/T = Q.

Оба выражения равносильны предыдущим в анализе бесконечно малых и именно их использовал Клаузиус, за исключением небольшой вариации dQ для внесения ясности.



Клаузиус был первым именитым ученым, заинтересовавшимся кинетической теорией, которую он использовал для выведения первого начала на основе принципов механики. Он обратился к тому же понятийному аппарату, что и Бернулли: для него газы — это множество молекул, беспорядочно движущихся и сталкивающихся друг с другом и со стенками сосуда (рисунок 1). Тепловая энергия газа может быть определена как кинетическая (связанная с движением) энергия отдельных молекул, что доказывает: тепло и работа — это формы передачи энергии. В своей статье 1866 года Больцман пришел к тому же результату с помощью других инструментов.

Клаузиус ввел понятие длины свободного пробега, представляющее собой среднее расстояние, которое одна молекула газа может пройти, прежде чем столкнуться с другой (рисунок 2). Длина свободного пробега тем меньше, чем больше молекул и чем больше их размер. Так, если человек знает длину свободного пробега некоторого газа, он может составить представление о размере молекул и об их числе. Это открытие оказалось актуальным в конце XIX века, поскольку существование атомов еще не было доказано, а возможность вычислять их свойства давала повод поверить в их реальность.

РИС. 1

РИС . 2


Лошмидт оказался первым ученым, использовавшим понятие длины свободного пробега для вычисления числа и диаметра молекул газа, связав введенную Клаузиусом величину с пропорцией между объемом в газообразном состоянии вещества и объемом этого вещества в сжиженном состоянии. На основе этой идеи он смог установить, что в случае с воздухом один кубический метр содержит примерно 19 квадриллионов молекул, то есть 19 с 24 нулями. Вычисление Лошмидта стало первой оценкой постоянной Авогадро, устанавливающей число молекул в одном моле вещества (моль — химическая единица, макроскопическое представление атомной массы молекулы).


ЧИСЛО АВОГАДРО

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука