На протяжении 1970-х годов я в основном занимался изучением черных дыр, но в 1981 году вновь заинтересовался вопросами происхождения и судьбы Вселенной. Толчком послужила организованная орденом иезуитов космологическая конференция в Ватикане, в которой я принимал участие. Католическая церковь совершила грубую ошибку, известным образом распорядившись судьбой Галилея: она попыталась навязать свое мнение по научному вопросу, провозгласив, что Солнце обращается вокруг Земли. Теперь, спустя столетия, она решила пригласить специалистов, чтобы посоветоваться с ними по вопросам космологии. В конце конференции участники были удостоены аудиенции папы. По его словам, нет ничего плохого в том, чтобы исследовать эволюцию Вселенной после Большого взрыва, но не следует пытаться разобраться в природе самого Большого взрыва, ибо это был момент творения и, следовательно, дело Божие. Я был рад, что он не знал о теме моего доклада на конференции. Ведь я только что рассуждал о возможности конечного, но безграничного пространства-времени, а это означало, что начала и как такового момента творения не существует. У меня не было желания разделить судьбу Галилея, с которым я ощущаю глубокую внутреннюю близость, в частности потому, что родился ровно через 300 лет после его смерти!
Чтобы разъяснить идеи, которых я и другие исследователи придерживались в вопросе влияния квантовой механики на происхождение и судьбу Вселенной, следует прежде всего разобраться,
Считается, что в момент Большого взрыва Вселенная имела нулевой размер и поэтому была бесконечно горячей. Но по мере расширения Вселенной температура излучения уменьшалась. Через одну секунду после Большого взрыва она упала примерно до 10 миллиардов градусов. То есть ранняя Вселенная была примерно в 1000 раз горячее, чем вещество в центре Солнца, и примерно такая же горячая, как нутро взорвавшейся водородной бомбы. В это время Вселенная состояла в основном из фотонов, электронов, нейтрино (чрезвычайно легкие частицы, участвующие только в слабом и гравитационном взаимодействии) и соответствующих античастиц вместе с протонами и нейтронами. По мере того как Вселенная продолжала расширяться, а ее температура падала, столкновения, приводящие к рождению пар электрон – позитрон, стали происходить реже, чем их исчезновения в результате аннигиляции. Таким образом большинство электронов и позитронов аннигилировали, породив дополнительные фотоны, а электронов осталось сравнительно немного. Нейтрино и антинейтрино взаимодействуют друг с другом и с другими частицами очень слабо и поэтому не аннигилируют. Следовательно, они должны встречаться и в настоящее время. Если бы мы только могли их обнаружить, то сумели бы проверить описанную выше картину начала Вселенной, ее «горячей» стадии. К сожалению, за миллиарды лет энергии нейтрино и антинейтрино тоже настолько снизились, что стали недостаточными для непосредственного наблюдения. Правда, если у этих частиц есть ненулевая масса покоя, о чем свидетельствуют результаты некоторых недавних экспериментов[29]
, то их можно зарегистрировать с помощью косвенных методов: они могут оказаться одной из форм темной материи, о которой упоминалось выше, – гравитационного притяжения которой может оказаться достаточно, чтобы остановить расширение Вселенной и заставить ее снова «схлопнуться».