Читаем Вселенная в зеркале заднего вида полностью

А чтобы вы не думали, будто все это досужий вымысел из области фантастики, имейте в виду, что в 1997 году группа итальянских и английских ученых провели первые успешные испытания устройства для квантовой телепортации и передали фотон на расстояние примерно в 2,5 метра. А совсем недавно, в 2012 году, китайские ученые побили этот рекорд и телепортировали фотоны почти на 100 километров.

Однако воздержитесь от преждевременных восторгов. Во-первых, речь идет об одной-единственной частице. Во-вторых, даже самые лучшие квантовые телепортаторы надежны лишь на 89 %. Неужели вам хочется попасть в те 11 %, которые гибнут по пути?

С фундаментальной точки зрения, телепортировать автомобиль или человека можно точно так же. Квантовое состояние человека или даже молекулы просто в чудовищное количество раз сложнее состояния фотона, поскольку приходится передать количество информации, возрастающее в геометрической прогрессии. Пересылка человека — это просто запредельно сложно. Ну, почти.

Неужели никто ничего не заметит?

Самое интересное в телепортации — то, что она выводит на передний план вопрос о том, что же это такое, когда два предмета — это «одно и то же». Как-никак эта книга о симметрии.

Электроны и правда идентичны друг другу, как и протоны, нейтроны и любые другие частицы какого-нибудь одного типа. Вдумайтесь, к чему это приводит в контексте радиоактивности. Космические лучи, попадая в нашу атмосферу, непрерывно создают вещество под названием углерод‑14. Наверное, вы о нем слышали. Углерод‑14 очень знаменит, поскольку с его помощью можно определять возраст плащаниц, старинных книг и тому подобного. Вот если бы Индиана Джонс был настоящий археолог, а не гробокопатель, он бы тоже использовал анализ на основе углерода‑14.

Как правило, углерод‑14 ведет себя точно так же, как и обычный углерод. Растения поглощают его, когда дышат. Мы едим растения, и углерод становится частью нас. Муфаса глядит на нас с одобрением.

Однако углерод‑14 не вполне стабилен: проходит в среднем примерно 6000 лет, и он распадается на азот и несколько частиц, которые нас не особенно интересуют. Когда я говорю «в среднем», то имею в виду, что распад углерода‑14 совершенно случаен, и если бы у меня был большой его кусок, то примерно через 6000 лет половина атомов из этого куска распалась бы, а вторая половина осталась бы без изменений. Если помните, это и есть определение периода полураспада.

Представьте себе, что прошло 5999 лет, а какой-то атом углерода‑14 еще не распался, и мы сравниваем его с новеньким атомом, который только что возник в атмосфере. Как вы считаете, который из них распадется первым? Интуитивно кажется, будто тот, который старше, распадется скорее, что ему давно пора. А почему, собственно? Магия симметрии замещения тождественных частиц в том и состоит, что на первом атоме не стоит даты изготовления и срока годности и невозможно определить, что он существует уже какое-то время.

Можно сделать и следующий шаг. Предположим, за долгие тысячелетия, пока я сидел и ждал, когда же распадутся отдельные атомы углерода‑14, я несколько заскучал. А пока я отвлекся, прибежал лукавый чертенок, то есть вы, и поменял местами два атома — один только что созданный, а другой в возрасте почти шести тысяч лет.

Мы уже разобрались, что ни к чему очевидному в случае атомов такая подмена не приведет. Мы не знали, какой из атомов распадется первым, до того, как вы поменяли их местами, и до сих пор не знаем. Но не это главное: даже если вы продумали подмену досконально и проследили, чтобы и состояния атомов в точности совпадали, и если замещение частиц — это абсолютная симметрия вселенной (так и есть), значит, не существует никакого физического механизма, который позволил бы мне обнаружить подмену.

В начале главы я перечислил несколько законов квантовой механики, и пора к ним вернуться. Вспомните, в частности, квантовую волну. Если бы мы смогли описать волновую функцию всей вселенной в каждый момент, у нас были бы все вероятности, чтобы обнаружить что угодно где угодно. Легко представить себе, что единственный суперкомпьютер, у которого хватит мощности проделать подобные вычисления — это и есть сама вселенная.

А теперь представьте себе, что мы подменяем один атом другим и при этом приводим их квантовые состояния в точное соответствие друг другу. Ни один эксперимент во вселенной не позволит отличить подменыша от оригинала — это идеальная симметрия в том смысле, в каком ее определил в начале этой книги Герман Вейль.

Симметрия замещения тождественных частиц — это один из важнейших шагов в структурировании нашего представления о вселенной, установление, которое подведет нас к следующей главе, а в конечном итоге — к объяснению, откуда взялись тяжелые элементы и вся химия на свете.

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги