Читаем Вселенная в зеркале заднего вида полностью

Максвелл подарил нам свои уравнения еще в XIX веке, и хотя переформулировать их в рамках фазовой симметрии и в самом деле значительное интеллектуальное достижение, честное слово, куда как проще решать задачу, когда заранее знаешь ответ. И все равно это была отнюдь не только математика ради математики — это открытие пробудило к жизни идею, что симметрии могут генерировать и другие силы (осторожно, спойлер: так и есть на самом деле).

В 1954 году Янь Чжэньнин и Роберт Л. Миллс из Брукхейвена разработали общий механизм перевода симметрий в силы. Янь и Миллс были интеллектуальными наследниками Эмми Нётер и довели ее увлечение симметриями и инвариантами до поистине эшеровского предела.

Вспомним, что Нётер говорила, что если у вас есть симметрия, то есть и сохраняемая величина. Янь и Миллс утверждали, что если предположить, что калибровочная симметрия имеет место — ну, вроде фокуса, когда подкладывают магниты, чтобы сбить компас, — значит, должна быть хотя бы одна частица-переносчик взаимодействия, а может быть, и несколько. Иначе говоря, симметрия не просто дает нам законы сохранения. Согласно Яню и Миллсу, если предполагаешь наличие симметрии, то получаешь фундаментальное взаимодействие от и до.

Легко сказать, но трудно сделать[99]. Симметрий у математиков целая куча, многие из них до ужаса абстрактны, а большинство имеет очень мало отношения к реальной жизни, а то и вообще никакого. К счастью, во вселенной есть кое-какие подсказки по поводу того, как должны работать симметрии.

Возьмите слабое взаимодействие. Прошу вас.

Без слабого взаимодействия нам совсем не жить. Это механизм, который пережигает водород в гелий и в процессе превращает протоны в нейтроны. Именно эти частицы обычно привлекают к себе больше всего внимания, однако и мелкие игроки — нейтрино и позитроны — тоже его заслуживают. Красноречивая деталь: похоже, везде, где возникает слабое взаимодействие, замешаны нейтрино или антинейтрино. Судя по всему, они постоянно маячат в тех местах, где электроны тоже чувствуют себя как дома.

Нейтрино связаны с электронами очень тесно. Наглядное тому свидетельство мы видим в зоопарке частиц. Фермионы собраны в пары. Это не просто условность, а еще одна симметрия.

Симметрии электрона и нейтрино математики тоже подобрали особое название. Они именуют ее SU (2). Может быть, вас несколько примирит с действительностью мысль о том, что мы эту симметрию уже видели, просто совсем в другом контексте. Это та самая симметрия, которая описывает спин. Электроны могут обладать и спином вверх, и спином вниз, и любым их сочетанием. Кроме того, мы видели, что неважно, в каком состоянии электрон находится. Если я превращу все «вверх» во «вниз» и наоборот, все взаимодействия, в сущности, останутся прежними.

Подобие это настолько идеальное, что эквивалент электрического заряда называют слабым изоспином. Точно так же как электрон со спином вверх и электрон со спином вниз имеют полный спин ½ независимо от направления, вверх в данном случае соответствует нейтрино, а вниз — электрону, и слабое взаимодействие способно превратить один вид в другой. Если бы вы превратили все электроны в нейтрино и наоборот во всей вселенной, слабое взаимодействие и ухом бы не повело.

Вообще-то это довольно странное открытие. В нормальной обстановке электроны и нейтрино совсем не похожи друг на друга. Все дело в том, что нашим миром в основном правит электромагнетизм, а он неизмеримо сильнее слабого взаимодействия. В электромагнетизме электрон и нейтрино и правда совсем разные. У одного есть заряд, а у другого нет.

Главное — у нас есть симметрия, а из симметрии мы получаем сохраняемую величину[100]:

Симметрия электрона и нейтрино → сохранение слабого изоспина

Слабое взаимодействие ведет себя практически так же, как электрический заряд в электромагнетизме. Оно говорит нам о том, как взаимодействуют друг с другом разнообразные частицы. А кроме того, поскольку слабое взаимодействие устроено несколько сложнее, у него есть и другое свойство под названием слабый гиперзаряд, который, если не вглядываться, подозрительно напоминает обычный электрический заряд.

А еще у нас есть частицы-переносчики взаимодействия. В слабом взаимодействии они называются бозонами W+

, W и Z0 и, как нам вскоре предстоит убедиться, ведут себя несколько сложнее, чем мы надеялись. Вот, например, среди частиц, участвующих в слабом взаимодействии свирепствует эпидемия ожирения, к которой Янь и Миллс готовы не были.

Почему атомы не взрываются?

Прежде чем мы окончательно отшлифуем стандартную модель, нужно закончить инвентаризацию. Электронами и нейтрино дело не ограничивается. Например, из них нельзя сделать атом. Составляющие атомов — протоны и нейтроны — представляют собой довольно-таки очевидную симметрию. Как выразился Дэвид Гриффитс, физик из Рид-колледжа:

Перейти на страницу:

Все книги серии Золотой фонд науки

φ – Число Бога
φ – Число Бога

Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вселенная! Курс выживания
Вселенная! Курс выживания

Эта книга – идеальный путеводитель по самым важным и, конечно, самым увлекательным вопросам современной физики: «Возможны ли путешествия во времени?», «Существуют ли параллельные вселенные?», «Если вселенная расширяется, то куда она расширяется?», «Что будет, если, разогнавшись до скорости света, посмотреть на себя в зеркало?», «Зачем нужны коллайдеры частиц, и почему они должны работать постоянно? Разве в них не повторяют без конца одни и те же эксперименты?» Юмор, парадоксальность, увлекательность и доступность изложения ставят эту книгу на одну полку с бестселлерами Я. Перельмана, С. Хокинга, Б. Брайсона и Б. Грина.Настоящий подарок для всех, кого интересует современная наука, – от любознательного старшеклассника до его любимого учителя, от студента-филолога до доктора физико-математических наук.

Джефф Бломквист , Дэйв Голдберг

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От Дарвина до Эйнштейна
От Дарвина до Эйнштейна

Эта книга – блестящее подтверждение вечной истины «не ошибается только тот, кто ничего не делает»! Человеку свойственно ошибаться, а великие умы совершают подлинно великие ошибки. Американский астрофизик Марио Ливио решил исследовать заблуждения самых блистательных ученых в истории человечества и разобраться не только в сути этих ляпсусов, но и в том, какие психологические причины за ними стоят, а главное – в том, как они повлияли на дальнейший прогресс человечества. Дарвин, Кельвин, Эйнштейн, Полинг, Хойл – эти имена знакомы нам со школьной скамьи, однако мы и не подозревали, в какие тупики заводили этих гениев ошибочные предположения, спешка или упрямство и какие неожиданные выходы из этих тупиков находила сама жизнь… Читателя ждет увлекательный экскурс в историю и эволюцию науки, который не только расширит кругозор, но и поможет понять, что способность ошибаться – великий дар. Дар, без которого человек не может быть человеком.

Марио Ливио

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги