Но что за объекты, построенные из чисел, могут быть чувствительны к разнице между одним и двумя полными поворотами? Скажем, компоненты стрелки/вектора для этого совершенно не годятся: после одного полного поворота вектор остается таким же, каким был, и никаких отличий двух поворотов от одного он почувствовать не в состоянии. Тем не менее существуют математические объекты, которые можно научить вести себя при поворотах так, чтобы они возвращались в исходное состояние только
после двух полных оборотов (а после одного полного – нет). Их можно придумать и для нашего трехмерного пространства, и для четырехмерного пространства, и для четырехмерного пространства-времени[228]. Они называются спинорами. Каждый спинор – это, конечно, тоже набор чисел, но их преобразование при поворотах таково, что поворот на 360° не возвращает их в исходное состояние, а приводит к умножению их на минус единицу. Требуется изящная математика, чтобы выяснить, набор из скольких чисел можно обучить таким изысканным манерам. Не вдаваясь в полуторастепенные детали, можно пользоваться следующим правилом: если сами повороты выполняются в пространстве размерности d и это число d четное, то спинор составлен из 2d/2 чисел. В четырехмерном пространстве, или пространстве-времени, т. е. при d = 4, это дает 22 = 4 числа. Получается столько же чисел, сколько составляют вектор в четырехмерном пространстве, но это совсем другие четверки чисел: при поворотах они изменяются по иным законам. Если размерность пространства нечетна, то способ вычисления слегка меняется: спинор состоит из 2(d – 1)/2 чисел. Для трехмерного пространства это дает 21 = 2. Это значит, что пары чисел можно сделать чувствительными к поворотам в трехмерном пространстве таким образом, чтобы любой поворот на 360° приводил к умножению на минус единицу.Итак, в четырехмерном пространстве-времени поле спина 1/2 имеет четыре компоненты. Каждая колебательная система в этом поле повторена четыре раза и копии снабжены такими метками, что вся четверка меняется при поворотах в пространстве-времени так, как это делают спиноры; в этом смысле четверки и составляют «цельное и осмысленное». Кванты этого поля – электроны и их античастицы (позитроны). Они делят между собой четыре составляющие спинора: две сообщают об электронах, а две другие – о позитронах. Сообщают же они, что каждый электрон несет внутри себя количество вращения, никак не связанное с пребыванием в атоме или где бы то ни было еще, а определяемое самим фактом его, электрона, существования. Интенсивность вращения при этом однозначно фиксирована и для электронов, и для позитронов: она (вспоминая общее правило) равна s
(s + 1) ħ2, где сейчас надо взять s = 1/2.Спин электрона равен 1/2
Одну вторую из последнего равенства и называют спином электрона. Спин электрона – это квантовое число, задающее его внутреннее количество вращения и равное
1/2. Теперь понятно, как обстоит дело с внутренней свободой электрона: для компоненты спина, как всегда, возможны значения из интервала от – s до s с шагом 1, но сейчас интервал этот получается не слишком большим: он включает только сами числа –1/2 и 1/2 (расстояние между ними как раз равно единице). Таким разнообразием внутренней жизни и может похвастаться электрон: демонстрировать компоненту спина –1/2 ħ или 1/2 ħ вдоль любого выбранного направления.Это и решает «загадку удвоения» числа состояний для электронов в атомах. Периодическая таблица элементов спасена. Как именно организация ее клеток в периоды определяется свойствами состояний (n
, , m) «от Шрёдингера» и спином, несколько подробнее обсуждается в добавлениях к этой прогулке.