Читаем Введение в электронику полностью

Усилители звуковой частоты усиливают сигналы переменного тока в диапазоне частот примерно от 20 до 20000 герц. Они могут усиливать весь диапазон звуковых частот или только небольшую часть его.

Усилители звуковой частоты делятся на две категории: усилители напряжения и усилители мощности. Усилители напряжения применяются, главным образом, для получения высокого усиления по напряжению. Усилители мощности используются для передачи большой мощности в нагрузку. Например, усилитель напряжения применяется, главным образом, для повышения напряжения выходного сигнала до уровня, достаточного для раскачки усилителя мощности. После этого используется усилитель мощности для получения высокой мощности, необходимой для передачи сигнала на усилительные колонки или другое устройство высокой мощности. Обычно усилители напряжения работают как усилители класса А, а усилители мощности — как усилители класса В.

На рис. 28–26 изображен простой усилитель напряжения.



Рис. 28–26.Усилитель напряжения


Изображенная цепь является цепью с общим эмиттером. Смещение транзистора выбрано для работы в классе А, чтобы обеспечить минимальные искажения. Усилитель может обеспечить заметное усиление по напряжению в широком диапазоне частот. Наличие конденсатора связи не позволяет цепи усиливать сигнал постоянного тока.

Два или более усилителя напряжения могут быть соединены последовательно для получения большего усиления. Каскады могут быть соединены с помощью RC связи или трансформаторной связи. Трансформаторная связь более эффективна. Трансформатор используется для согласования входного и выходного импеданса двух каскадов. Это предохраняет второй каскад от перегрузки первым каскадом. Перегрузка возникает, когда устройство создает большую нагрузку и сильно влияет на выход, потребляя слишком большой ток. Трансформатор, используемый для связи двух каскадов, называется меж каскадным трансформатором.

Когда достаточный уровень выходного напряжения достигнут, используется усилитель мощности для раскачки нагрузки. Усилители мощности рассчитаны для раскачки определенных нагрузок и характеризуются мощностью в ваттах. Обычно сопротивление нагрузки лежит в пределах от 4 до 16 Ом.

На рис. 28–27 изображена схема усилителя мощности на двух транзисторах, которая называется двухтактной.



Рис. 28–27.

Двухтактный усилитель мощности.


Верхняя половина цепи является зеркальным отображением нижней. Каждая половина представляет собой усилитель на одном транзисторе. Выходное напряжение снимается с первичной обмотки трансформатора в течение чередующихся полупериодов входного сигнала. Оба транзистора работают как усилители класса АВ или В. Вход двухтактного усилителя требует сдвинутых по фазе на 180° входных сигналов. Это означает, что один сигнал должен быть инвертирован по отношению к другому. Однако оба сигнала должны иметь одинаковую амплитуду и частоту. Цепь, создающая такой фазовый сдвиг сигнала, называется фазовращателем. Фазовращатель на одном транзисторе изображен на рис. 28–28. Выходы взяты с коллектора и эмиттера транзистора.



Рис. 28–28.Фазовращатель.


Фазовращатель работает, как усилитель класса А, обеспечивая наименьшие искажения выходного сигнала. Конденсаторы связи необходимы для компенсации разницы между коллекторным и эмиттерным напряжениями постоянного тока.

Двухтактный усилитель, не требующий фазовращателя, называется комплементарным двухтактным усилителем.

Для работы двухтактного каскада в нем используются транзисторы n-р-n и р-n-р (рис. 28–29).



Рис. 28–29.Комплементарный двухтактный усилитель мощности.


Два транзистора соединены последовательно, эмиттерами друг к другу. Когда на каждый транзистор подается напряжение смещения в прямом направлении, между его базой и эмиттером возникает напряжение 0,7 вольт или 1,4 вольт между двумя базами. Два диода помогают поддерживать разность потенциалов 1,4 вольт постоянной. Выходное напряжение берется из точки соединения эмиттеров через конденсатор связи.

Для усилителей мощностью более 10 ватт, трудно и дорого подобрать пару n-р-n и р-n-р транзисторов с одинаковыми характеристиками. На рис. 28–30 изображена цепь, использующая два n-р-n транзистора в качестве мощного выходного транзистора. Мощные транзисторы раскачиваются двумя транзисторами n-р-n и р-n-р меньшей мощности. Верхний набор транзисторов образует схему Дарлингтона.



Рис. 28–30.Квазикомплементарный усилитель мощности.


Перейти на страницу:

Все книги серии Учебники и учебные пособия

Введение в электронику
Введение в электронику

Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера. Книга снабжена большим количеством примеров, задач и упражнений, выполнение которых помогает пониманию и усвоению материала. Предназначена для учащихся старших курсов средних специальных учебных заведений радиотехнического профиля, а также будет полезна самостоятельно изучающим основы электроники.

Эрл Д. Гейтс

Радиоэлектроника

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника