Независимые электрические заряды существуют в полупроводниковых материалах каждого типа, так как электроны могут свободно дрейфовать. Дрейфующие электроны и дырки называются подвижными зарядами
. Кроме подвижных зарядов, каждый атом, который теряет электрон, считается положительным зарядом, так как он имеет больше протонов, чем электронов. Аналогично, каждый атом, который присоединяет электрон, имеет больше электронов, чем протонов и считается отрицательным зарядом. Как указывалось в главе 1, эти заряженные атомы называются положительными и отрицательными ионами. В полупроводниковых материалах n- и р-типа всегда содержится равное количество подвижных и ионных зарядов.Диод
создается соединением двух полупроводников n- и р-типа (рис. 20-1). В месте контакта этих материалов образуется переход. Это устройство называется диодом на основе р-n перехода.
Рис. 20-1.
Диод создается соединением вместе двух материалов р- и n-типа, образующих р-n переход.
При формировании перехода подвижные заряды в его окрестности притягиваются к зарядам противоположного знака и дрейфуют по направлению к переходу. По мере накопления зарядов этот процесс усиливается. Некоторые электроны перемещаются через переход, заполняя дырки вблизи перехода в материале р
-типа. В материале n-типа в области перехода электронов становится меньше. Эта область перехода, где концентрация электронов и дырок уменьшена, называется обедненным слоем. Он занимает небольшую область с каждой стороны перехода.В обедненном слое нет основных носителей, и материалы n
-типа и р-типа не являются больше электрически нейтральными. Материал п-типа становится положительно заряженным вблизи перехода, а материал р-типа — отрицательно заряженным.Обедненный слой не может стать больше. Взаимодействие зарядов быстро ослабевает при увеличении расстояния, и слой остается малым. Размер слоя ограничен зарядами противоположного знака, расположенными по обе стороны перехода. Как только отрицательные заряды располагаются вдоль перехода, они отталкивают другие электроны и не дают им пересечь переход. Положительные заряды поглощают свободные электроны и также не дают им пересечь переход.
Эти заряды противоположного знака, выстроившиеся с двух сторон перехода, создают напряжение, называемое потенциальным барьером
. Это напряжение может быть представлено как внешний источник тока, хотя существует только на р-n переходе (рис. 20-2).
Рис. 20-2.
Потенциальный барьер, существующий вблизи р-n перехода.
Потенциальный барьер довольно мал, его величина составляет только несколько десятых долей вольта. Типичные значения потенциального барьера — 0,3 вольта для р-n
перехода в германии, и 0,7 вольта для р-n перехода в кремнии. Потенциальный барьер проявляется, когда к р-n переходу прикладывается внешнее напряжение.
20-1. Вопросы
1. Дайте определения следующих терминов:
а.
Донорный атом;б. Акцепторный атом;
в.
Диод.2. Что происходит, когда создается контакт материала n
-типа и материала р-типа?3. Как образуется обедненный слой?
4. Что такое потенциальный барьер?
5. Каковы типичные значения потенциального барьера для германия и кремния?
20-2. СМЕЩЕНИЕ ДИОДА
Напряжение, приложенное к диоду, называется напряжением смещения
. На рис. 20-3 показан диод на основе р-n перехода, соединенный с источником тока. Резистор добавлен для ограничения тока до безопасного значения.
Рис. 20-3
. Диод на основе р-n перехода при прямом смещении.
В изображенной цепи отрицательный вывод источника тока соединен с материалом n
-типа. Это заставляет электроны двигаться от вывода по направлению к р-n переходу. Свободные электроны, накопившиеся на р-стороне перехода притягиваются к положительному выводу. Это уменьшает количество отрицательных зарядов на р-стороне, потенциальный барьер уменьшается, что дает возможность для протекания тока. Ток может течь только тогда, когда приложенное напряжение превышает потенциальный барьер.Источник тока создает постоянный поток электронов, который дрейфует через материал n
-типа вместе с содержащимися в нем свободными электронами. Дырки в материале р-типа также дрейфуют по направлению к переходу. Электроны и дырки собираются на переходе и взаимно уничтожаются. Однако в то время как электроны и дырки взаимно компенсируются, на выводах источника тока появляются новые электроны и дырки. Большинство носителей продолжает двигаться по направлению к р-n переходу, пока приложено внешнее напряжение.