Читаем Введение в логику и научный метод полностью

Читатель, без сомнения, находится в ловушке слов. Действительно, существует метод математической индукции, однако это название не вполне удачно, поскольку подразумевает некое сходство с методом проведения экспериментов и подтверждения гипотез, использующимся в естественных науках. Однако такого сходства на самом деле нет, а математическая индукция является чисто доказательным методом.

Однако следует ли еще раз предостерегать читателя от распространенной ошибки спутывания временного порядка, в котором мы обнаруживаем те или иные суждения науки, и порядка их логической зависимости? Любой, кто когда-либо решал задачу по геометрии, знает, что существует подготовительная «стадия прощупывания», во время которой мы строим догадки, размышляем, строим вспомогательные линии и т. д. до тех пор, пока мы, как говорится, не наткнемся на доказательство. При этом никто не станет спутывать данную предварительную стадию, какой бы существенной она ни была, с достигаемым в итоге доказательством. Такая начальная стадия «прощупывания», действительно, обладает большим сходством с тем, как люди осуществляют исследования в какой бы то ни было сфере. Процесс проверки путем догадок характерен и для математического исследования, так же как и для исследования в естественных науках.

Принцип математической индукции может быть сформулирован следующим образом: если некоторое свойство принадлежит числу 1 и если, когда оно принадлежит числу п, можно доказать, что оно принадлежит и п + 1, то оно принадлежит всем числам. Докажем с помощью данного принципа следующую теорему для всех целочисленных значений п:

1 + 3 + 5 + 7 +… (2п – 1) = n2.

Очевидно, что это истинно для rt = 1. Теперь покажем, что, если то же самое имеет место и для числа п, то оно имеет место и для (п + 1).

a. 1 + 3 + 5 +… (2 n – 1) = n2.

Прибавив (2 n – 1) + 2 или (2 n + 1) к обеим сторонам уравнения, мы получим:

b. 1 + 3 + 5 +… (2 n – 1) + (2 n + 1) = n2 + (2 n + 1) = (n +1)2.

Однако Ь имеет ту же форму, что и а. Таким образом, мы показали, что если теорема истинна для числа п, то она истинна и для (n + 1). Она истинна для n = 1. Следовательно, она истинна для n = 1 + 1, т. е. для 2; следовательно, она истинна для n = 2 + 1, т. е. для 3, и т. д. для каждого целого числа, которого можно достигнуть путем последовательного прибавления 1. Таким образом, получившееся доказательство является абсолютно строгим, дедуктивным и всецело формальным. В нем нет никакой апелляции к эксперименту. А принцип математической индукции, как показывают современные исследователи, является частью самого значения конечных, или «индуктивных», чисел.

§ 7. Роль обобщения в математике

В предыдущей главе мы обратили внимание на изменение в значении слов в процессе обобщения. В математике подобный процесс также имеет место и чаще всего связан с тем, что называется «современным обобщением числа». Несложно впасть в ошибку относительно того, что подразумевается под «числом», когда речь идет о его обобщении. Рассмотрим данный вопрос подробнее.

Слово «число» изначально распространялось только на целые числа (1, 2, 3 и т. д.). При таком понимании числа можно складывать и умножать, а в некоторых случаях вычитать и делить. Абстрактная природа целых чисел может быть выражена посредством набора суждений, указывающих на то, какие операции могут проводиться в отношении суждений и в каких отношениях эти операции состоят друг к другу. Например, ниже приведены некоторые из абстрактных свойств целых чисел:

a

+ b = b + a ,

( a + b ) + c = a + (

b + c ),

a × b = b × a,

a × ( b

+ c ) = a × b + a × c.


Операции, являющиеся инверсными относительно умножения и сложения, могут быть проведены над некоторыми из целых чисел. Так, 4 × 3 = 12; следовательно, существует целое число х, такое, что х × 3 = 12: такое число х – частное, получающееся в результате деления 12 на 3. Однако если мы не расширим наше понятие числа, инверсная операция деления не всегда может быть осуществима. Так, не существует целого числа такого, что х × 3 = 5. Следовательно, для того чтобы не было исключений в случае с делением, были введены дроби. Их тоже назвали числами, тем самым область чисел была расширена в интересах непрерывности и общности.

Это был первый пример обобщения понятия числа. Почему дроби так же стали понимать, как числа? Ответ прост, хотя и был найден совсем недавно. Дело в том, что над ними можно было проводить операции сложения, умножения и даже деления, а также потому, что формальные отношения целых чисел друг к другу в том, что касается этих операций, являются теми же самыми, что и формальные отношения между дробями. Иными словами, целые числа и дроби образуют изоморфные системы.

Перейти на страницу:

Похожие книги

Молодой Маркс
Молодой Маркс

Удостоена Государственной премии СССР за 1983 год в составе цикла исследований формирования и развития философского учения К. Маркса.* * *Книга доктора философских наук Н.И. Лапина знакомит читателя с жизнью и творчеством молодого Маркса, рассказывает о развитии его мировоззрения от идеализма к материализму и от революционного демократизма к коммунизму. Раскрывая сложную духовную эволюцию Маркса, автор показывает, что основным ее стимулом были связь теоретических взглядов мыслителя с политической практикой, соединение критики старого мира с борьбой за его переустройство. В этой связи освещаются и вопросы идейной борьбы вокруг наследия молодого Маркса.Третье издание книги (второе выходило в 1976 г. и удостоено Государственной премии СССР) дополнено материалами, учитывающими новые публикации произведений основоположников марксизма.Книга рассчитана на всех, кто изучает марксистско-ленинскую философию.

Николай Иванович Лапин

Философия
Социология искусства. Хрестоматия
Социология искусства. Хрестоматия

Хрестоматия является приложением к учебному пособию «Эстетика и теория искусства ХХ века». Структура хрестоматии состоит из трех разделов. Первый составлен из текстов, которые являются репрезентативными для традиционного в эстетической и теоретической мысли направления – философии искусства. Второй раздел представляет теоретические концепции искусства, возникшие в границах смежных с эстетикой и искусствознанием дисциплин. Для третьего раздела отобраны работы по теории искусства, позволяющие представить, как она развивалась не только в границах философии и эксплицитной эстетики, но и в границах искусствознания.Хрестоматия, как и учебное пособие под тем же названием, предназначена для студентов различных специальностей гуманитарного профиля.

Владимир Сергеевич Жидков , В. С. Жидков , Коллектив авторов , Т. А. Клявина , Татьяна Алексеевна Клявина

Культурология / Философия / Образование и наука