Читаем Завод без людей полностью

Возьмем, к примеру, получение электрической энергии из тепловой. Есть несколько методов. Первый, наиболее распространенный, вам хорошо известен, это метод, используемый на электростанциях; он относится к косвенным методам получения электроэнергии. Топливо сжигают в топках. Сгорая, оно нагревает воду. Получившийся в результате пар высокой температуры и высокого давления подается в турбину. Под воздействием струи пара турбина вращается и приводит в движение генератор. На выходе генератора развивается электрическое напряжение. Вот сколько получилось этапов: преобразование энергии огня в энергию пара с помощью котла, преобразование энергии пара в механическую энергию с помощью турбины и, наконец, преобразование механической энергии в электрическую с помощью генератора — три этапа!

Второй метод не требует столь сложных и громоздких преобразований. Вы слышали о так называемых термоэлементах. С помощью термоэлементов энергия получается из тепловой непосредственно. Достаточно нагреть спай двух металлов, например меди и висмута, составляющих термоэлемент, чтобы возникла электродвижущая сила. Термоэлектрический эффект был открыт членом Берлинской академии Т. Зеебеком еще в 1821 году. Такой метод получения электроэнергии, как мы видим, является методом прямого получения электрической энергии из тепловой. Беда только в том, что он очень мало эффективен и не может быть применен для создания мощных источников электрического тока.

В последние годы найден новый метод прямого получения электрической энергии из тепловой. Электрическая энергия получается с помощью новых полупроводниковых материалов. Этот путь преобразования тепловой энергии в электрическую уже гораздо более эффективен. Так, тепла обычной керосиновой лампы — «молнии» хватает, чтобы от полупроводникового термоэлемента работал радиоприемник.

Полупроводниковый термогенератор.


Важнейшим свойством электроэнергии является ее способность дробиться на любые доли. Тепловая энергия тоже может дробиться. Возьмите хотя бы систему парового отопления: от одного котла питаются сотни радиаторов, установленных в разных частях здания. Но сколько же приходится затрачивать труда и металла на прокладку соединительных труб! Как это громоздко и неудобно! Не лучше обстоит дело и с дроблением механической энергии. Вспомните об устройстве трансмиссий в мастерской ФЗУ. А с электричеством все это делается очень просто — два или три тонких провода, и энергию можно вести к любому электроприбору.

Но особенно заметно преимущество электрической энергии, когда требуется передавать ее на большие расстояния. Тут уж с ней ничто не может равняться. Механическую энергию вообще не передают на дальние расстояния, тепловую же энергию можно передавать с помощью горячей воды или пара от силы на несколько километров. С электрической энергией может соперничать только ее ближайшая родственница — лучистая энергия: энергия электромагнитная, радиоволн, — и энергия световая. Однако с помощью лучистой энергии люди еще не научились передавать большие мощности в узком параллельном пучке. Сумеют ли они осуществить когда-нибудь передачу энергии без проводов и окажется ли это необходимым, сейчас трудно сказать. Во всяком случае задача такая очень заманчива.

Вот эти-то все свойства электроэнергии позволили Ленину предвидеть всю важность и универсальность применения электроэнергии. Эти-то свойства и дают нам ключ к решению тысяч и тысяч разнообразнейших задач, решение которых средствами механики или вовсе невозможно, или значительно более сложно и дорого.

Прежде чем закончить главу, я хочу вам рассказать о двух крупнейших изобретениях, сделанных в России в конце XIX века: о радио и самолете. Каждому из них предстояло оказать решающую роль в создании техники сегодняшнего дня.

Изобретение радио было предсказано наукой. Великий английский физик Фарадей в 1831 году открыл закон электромагнитной индукции. Он же ввел в науку и понятие о магнитном поле и магнитных силовых линиях. К концу жизни Фарадей пришел к заключению, что свет — это тоже электромагнитные колебания. Но он не решился опубликовать свои мысли, настолько они были в то время необычны.

Это сделал за него другой великий ученый, Д. Максвелл, который начиная с 1864 года работал над созданием математической теории электромагнитного поля. Эта теория предсказала существование электромагнитных волн. Но она совсем не говорила о том, как их можно получать и для чего эти волны можно использовать в жизни.

В 1886 году немецкий физик Г. Герц сумел опытным путем доказать существование электромагнитных волн.

Перейти на страницу:

Все книги серии Школьная библиотека (Детгиз)

Дом с волшебными окнами. Повести
Дом с волшебными окнами. Повести

В авторский сборник Эсфири Михайловны Эмден  включены повести:«Приключения маленького актера» — рис. Б. Калаушина«Дом с волшебными окнами» — рис. Н. Радлова«Школьный год Марина Петровой» — рис. Н. Калиты1. Главный герой «Приключений маленького актера» (1958) — добрый и жизнерадостный игрушечный Петрушка — единственный друг девочки Саши. Но сидеть на одном месте не в его характере, он должен действовать, ему нужен театр, представления, публика: ведь Петрушка — прирождённый актёр…2. «Дом с волшебными окнами» (1959) — увлекательная новогодняя сказка. В этой повести-сказке может случиться многое. В один тихий новогодний вечер вдруг откроется в комнату дверь, и вместе с облаком морозного пара войдёт Бабушка-кукла и позовёт тебя в Дом с волшебными окнами…3. В повести «Школьный год Марины Петровой» (1956) мы встречаемся с весёлой, иногда беспечной и упрямой, но талантливой Мариной, ученицей музыкальной школы. В этой повести уже нет сказки. Но зато как увлекателен этот мир музыки, мир настоящего искусства!

Борис Матвеевич Калаушин , Николай Иванович Калита , Николай Эрнестович Радлов , Эсфирь Михайловна Эмден

Проза для детей / Детская проза / Сказки / Книги Для Детей

Похожие книги