Читаем Живая математика. Математические рассказы и головоломки полностью

111. Трехногий стол всегда может касаться пола концами своих трех ножек, потому что через каждые три точки пространства может проходить плоскость, и притом только одна. В этом причина того, что трехногий стол не качается; как видите, она чисто геометрическая, а не физическая. Вот почему так удобно пользоваться треногами для землемерных инструментов и фотографических аппаратов. Четвертая нога не сделала бы подставку устойчивее; напротив, пришлось бы тогда всякий раз заботиться о том, чтобы подставка не качалась.


112. На вопрос задачи легко ответить, если сообразить, какое время показывают стрелки. Стрелки на левых часах (рис. 140) показывают, очевидно, 7 час. Значит, между концами этих стрелок заключена дуга в 5/12 полной окружности.

В градусной мере это составляет


Стрелки на правых часах показывают, как нетрудно сообразить, 9 ч 30 мин. Дуга между их концами содержит 3 % двенадцатых доли полной окружности, или 7/24.

В градусной мере это составляет


113. Принимая рост человека в 175 см и обозначив радиус Земли через R,

имеем:

2 х 3,14 х (R + 175) - 2 х 3,14 х R = 2 х 3,14 х 175 = 1099 см,

т. е. около 11 м.

Рис. 141


Поразительно здесь то, что результат совершенно не зависит от радиуса шара и, следовательно, одинаков на исполинском Солнце и маленьком шарике.


114. Требование задачи легко удовлетворить, если расставить людей в форме шестиугольника, как показано на рис. 141.


115. На рис. 142 указаны следы сабельных ударов, а на рис. 143 видно, как надо расположить образовавшиеся 4 куска, чтобы составить второй, более характерный символ фашистской диктатуры: квадрат концентрационного лагеря.

Рис. 142

Рис. 143

Рис. 144

Рис. 145

Рис. 146


116. Читатели, слыхавшие о неразрешимости задачи квадратуры круга, сочтут, вероятно, и предлагаемую задачу неразрешимой строго геометрически. Раз нельзя превратить в равновеликий квадрат полный круг, то, думают многие, нельзя превратить в прямоугольную фигуру и луночку, составленную двумя дугами окружности. Между тем задача, безусловно, может быть решена геометрическим построением, если воспользоваться одним любопытным следствием общеизвестной Пифагоровой теоремы.

Следствие, которое я имею в виду, гласит, что сумма площадей полукругов, построенных на катетах, равна полукругу, построенному на гипотенузе (рис. 144). Перекинув большой полукруг на другую сторону (рис. 145). видим, что обе заштрихованные луночки вместе равновелики треугольнику[38].

Если треугольник взять равнобедренный, то каждая луночка в отдельности будет равновелика половине этого треугольника (рис. 146).

Рис. 147

Рис. 148. Превращение квадрата в крест


Отсюда следует, что можно геометрически точно построить равнобедренный прямоугольный треугольник, площадь которого равна площади серпа. А так как равнобедренный прямоугольный треугольник легко превращается в равновеликий квадрат (рис. 147)» то и серп наш возможно чисто геометрическим построением заменить равновеликим квадратом.

Остается только превратить этот квадрат в равновеликую фигуру Красного Креста (составленную, как известно, из 5 примкнутых друг к другу равных квадратов). Существует несколько способов выполнения такого построения; два из них показаны на рис. 148 и 149.

Оба построения начинают с того, что соединяют вершины квадрата с серединами противоположных сторон. Важное замечание: превратить в равновеликий крест можно только такую фигуру серпа, которая составлена из двух дуг окружностей: наружного полукруга и внутренней четверти окружности соответственно большего радиуса[39].


Рис. 149. Другой способ превращения квадрата в крест

Рис. 150


Итак, вот ход построения креста, равновеликого серпу. Концы А и В серпа (рис. 150)

соединяют прямой: в середине О этой прямой восставляют перпендикуляр и откладывают ОС=ОА. Равнобедренный треугольник ОАС дополняют до квадрата ОАDС, который превращают в крест одним из способов, указанных на рис. 148 и 149.


117. Приводим окончание прерванного рассказа Бенедиктова:

«Задача была мудреная. Дочери, идучи на рынок, стали между собой совещаться, причем вторая и третья обращались к уму и совету старшей. Та, обдумав дело, сказала:

- Будем, сестры, продавать наши яйца не десятками, как это делалось у нас до сих пор, а семерками: семь яиц - семерик; на каждый семерик и цену положим одну, которой все и будем крепко держаться, как мать сказала. Чур, не спускать с положенной цены ни копейки! За первый семерик алтын1, согласны?

- Дешевенько, - сказала вторая.

- Ну, - возразила старшая, - зато мы поднимем цену на те яйца, которые за продажею круглых семериков в корзинах у нас останутся. Я заранее проверила, что яичных торговок, кроме нас, на рынке никого не будет. Сбивать цены некому; на оставшееся же добро, когда есть спрос, а товар на исходе, известное дело, цена возвышается. Вот мы на остальных-то яйцах и наверстаем.

- А почем будем продавать остальные? - спросила младшая.

- По 3 алтына за каждое яичко. Давай, да и только. Те, кому очень нужно, дадут.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже