[154] Kipling D., Davis T., Ostler E.L., Faragher R.G.A. (2004) What can progeroid syndrome tell us about human aging?
[155] Kirchner J.W., Roy B.A. (1999) The evolutionary advantages of dying young: Epidemiological implications of longevity in metapopulations.
[156] Kirchner J.W., Roy B.A. (2002) Evolutionary implications of host-pathogen specificity: fitness consequences of pathogen virulence traits.
[157] Kirkwood T.B., Kowald A. (2012) The free-radical theory of ageing — older, wiser and still alive: Modelling positional effects of the primary targets of ROS reveals new support.
[158] Kirkwood T.B., Melov S. (2011) On the programmed/non-programmed nature of ageing within the life history.
[159] Kirschner M., Gerhart J. (1998) Evolvability.
[160] Klosterhalfen B., Bhardwaj R.S. (1998) Septic shock.
[161] Koga H., Kaushik S., Cuervo A.M. (2011) Protein homeostasis and aging: The importance of exquisite quality control.
[162] Kolodkin-Gal I., Hazan R., Gaathon A., Carmeli S., Engelberg-Kulka H. (2007) A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli.
[163] Kolosova N.G., Stefanova N.A., Muraleva N.A., Skulachev V.P. (2012) The mitochondria-targeted antioxidant SkQ1 but not N-acetylcysteine reverses aging-related biomarkers in rats.
[164] Korshunov S.S., Skulachev V.P., Starkov A.A. (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria.
[165] Krementsova A.V., Roshina N.V., Tsybul'ko E.A., Rybina O.Y., Symonenko A.V., Pasyukova E.G. (2012) Reproducible effects of the mitochondria-targeted plastoquinone derivative SkQ1 on Drosophila melanogaster lifespan under different experimental scenarios.
[166] Kruk J., Jemiola-Rzeminska M., Strzalka K. (1997) Plastoquinol and alpha-tocopherol quinol are more active than ubiquinol and alpha-tocopherol in inhibition of lipid peroxidation.
[167] Ku H.H., Brunk U.T., Sohal R.S. (1993) Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species.
[168] Kujoth G.C., Hiona A., Pugh T.D., Someya S., Panzer K., Wohlgemuth S.E., Hofer T., Seo A.Y., Sullivan R., Jobling W.A., Morrow J.D., Van Remmen H., Sedivy J.M., Yamasoba T., Tanokura M., Weindruch R., Leeuwenburgh C., Prolla T.A. (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging.
[169] Labbe A., Lafleur V.N., Patten D.A., Robitaille G.A., Garand C., Lamalice L., Lebel M., Richard D.E. (2012) The Werner syndrome gene product (WRN): a repressor of hypoxia-inducible factor-1 activity.
[170] Labinskyy N., Csiszar A., Orosz Z., Smith K., Rivera A., Buffenstein R., Ungvari Z. (2006) Comparison of endothelial function, O2-*
and H2O2 production, and vascular oxidative stress resistance between the longest-living rodent, the naked mole rat, and mice.[171] Lambert A.J., Boysen H.M., Buckingham J.A., Yang T., Podlutsky A., Austad S.N., Kunz T.H., Buffenstein R., Brand M.D. (2007) Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms.
[172] Lambert A.J., Buckingham J.A., Boysen H.M., Brand M.D. (2010) Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon,
[173] Lane N. (2008) Marine microbiology: origins of death.
[174] LaRocca T.J., Seals D.R., Pierce G.L. (2010) Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity.
[175] Lawenda B.D., Kelly K.M., Ladas E.J., Sagar S.M., Vickers A., Blumberg J.B. (2008) Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy?
[176] Le Page-Degivry M.T., Bidard J.N., Rouvier E., Bulard C., Lazdunski M. (1986) Presence of abscisic acid, a phytohormone, in the mammalian brain.