Читаем Жизнь науки полностью

Позвольте мне теперь вернуться к существу дела. Чтобы прийти к основным уравнениям для электрических явлений в движущихся телах, я примкнул к точке зрения, которую в последние годы разделяют многие физики; а именно, я предположил, что во всех телах имеются малые электрически заряженные материальные частицы и что все электрические явления обусловлены расположением и движением этих «ионов». Эта точка зрения в отношении электролитов является общепризнанной и единственно возможной; Глизе[40], Шустер[41], Аррениус[42]

, Эльстер и Гейтель[43] высказывали мнение о том, что электропроводность газов также вызвана перемещением ионов. Мне представляется, что ничто не мешает сделать предположение о том, что молекулы диэлектрических тел также содержат заряженные частицы, привязанные к определенным положениям равновесия и смещающиеся только под действием внешних электрических сил; в этом и заключается «диэлектрическая поляризация» таких тел.

Периодически изменяющаяся поляризация, соответствующая, согласно теории Максвелла, световому лучу, согласно этой точке зрения, сводится к колебанию ионов. Как известно, многие исследователи, находившиеся на позициях старой теории света, рассматривали участие весомой материи в колебаниях как причину дисперсии света. Это объяснение в основном сохраняется и в электромагнитной теории света, при этом ионам нужно только приписать определенную массу. Я показал это в моей старой работе где, однако, я выводил движение частиц из законов дальнодействия, в то время как сейчас я гораздо проще получаю то же из представлений Максвелла. Позже Гельмгольц[44] исходил в своей электромагнитной теории света из той же точки зрения[45]

.

Гизе[46] применил к различным случаям гипотезу о том, что в металлических проводниках электричество связано с ионами; однако данная им картина явлений в проводниках в одном пункте существенно отличается от представлений, принятых в отношении проводимости электролитов. В то время как частицы растворенной соли, как бы они ни задерживались молекулами воды, в конце концов могут перемещаться на большие расстояния, ионы в медной проволоке не обладают столь большой способностью к перемещениям. Тем не менее, здесь возможны передвижения на молекулярные расстояния, если предположить, что ион часто передает своп заряд другому иону или что два противоположно заряженных иона при своей встрече или после того, как они «связываются» друг с другом, обмениваются зарядами. Во всяком случае, такие явления должны происходить на границе двух тел, когда ток течет через эту границу. Если, например, из раствора соли на медной пластинке осаждаются и положительно заряженных атомов меди, и если мы считаем, что все это электричество связывается с ионами, то следует принять, что заряды переходят на и атомов в медной пластинке, или что 1/2 и выделяющихся частиц обмениваются зарядами с 1/2 и отрицательно заряженными атомами меди, уже находящимися в электроде.

Таким образом, предположение о переходе ионных зарядов или обмене ими (этот процесс еще весьма неясен) является неизбежным дополнением любой теории, которая предполагает перенос электричества ионами. Поэтому продолжительный электрический ток никогда не является только

конвективным. По крайней мере, если расстояние между центрами двух соприкасающихся или связанных друг с другом частиц равно l, то движение электричества на расстояния порядка l происходит без конвекции;

если же это расстояние мало по сравнению с отрезком, на который происходит перемещение зарядов, то в целом существенна только конвекция.

Гизе придерживается мнения, что в металлах истинная конвекция вообще не играет роли. Поскольку ввести в теорию «перепрыгивание» зарядов кажется невозможным, то я вынужден полностью отказаться от рассмотрения этого процесса и представляю себе ток в металлической проволоке как движение заряженных частиц.

Дальнейшее исследование должно решить, сохранятся ли результаты теории при иных предположениях.

§ 3. Теория ионов весьма подходит для моей цели, поскольку она позволяет в уравнениях достаточно удовлетворительным образом учесть проницаемость тел для эфира. Эти уравнения естественно разбиваются на две группы. Во-первых, следует рассмотреть, как определяется состояние эфира зарядом, положением и движением ионов; затем, во-вторых, следует задать силы, с которыми эфир действует на заряженные частицы. В моей уже цитированной работе [47] я вывел соответствующие формулы с помощью принципа Даламбера, делая неточные предположения; этот путь имеет много общего с применением уравнений Лагранжа Максвеллом. Теперь же я ради краткости предпочитаю формулировать сами основные уравнения в качестве исходных гипотез.

Перейти на страницу:

Все книги серии Классики науки

Жизнь науки
Жизнь науки

Собрание предисловий и введений к основополагающим трудам раскрывает путь развития науки от Коперника и Везалия до наших дней. Каждому из 95 вступлений предпослана краткая биография и портрет. Отобранные историей, больше чем волей составителя, вступления дают уникальную и вдохновляющую картину возникновения и развития научного метода, созданного его творцами. Предисловие обычно пишется после окончания работы, того труда, благодаря которому впоследствии имя автора приобрело бессмертие. Автор пишет для широкого круга читателей, будучи в то же время ограничен общими требованиями формы и объема. Это приводит к удивительной однородности всего материала как документов истории науки, раскрывающих мотивы и метод работы великих ученых. Многие из вступлений, ясно и кратко написанные, следует рассматривать как высшие образцы научной прозы, объединяющие области образно-художественного и точного мышления. Содержание сборника дает новый подход к сравнительному анализу истории знаний. Научный работник, студент, учитель найдут в этом сборнике интересный и поучительный материал, занимательный и в то же время доступный самому широкому кругу читателей.

Сергей Петрович Капица , С. П. Капица

Научная литература / Прочая научная литература / Образование и наука
Альберт Эйнштейн. Теория всего
Альберт Эйнштейн. Теория всего

Альберт Эйнштейн – лауреат Нобелевской премии по физике, автор самого известного физического уравнения, борец за мир и права еврейской нации, философ, скрипач-любитель, поклонник парусного спорта… Его личность, его гений сложно описать с помощью лексических формул – в той же степени, что и создать математический портрет «теории всего», так и не поддавшийся пока ни одному ученому.Максим Гуреев, автор этой биографии Эйнштейна, окончил филологический факультет МГУ и Литературный институт (семинар прозы А. Г. Битова). Писатель, член русского ПЕН-центра, печатается в журналах «Новый мир», «Октябрь», «Знамя» и «Дружба народов», в 2014 году вошел в шорт-лист литературной премии «НОС». Режиссер документального кино, создавший более 60-ти картин.

Максим Александрович Гуреев

Биографии и Мемуары / Документальное
Капица. Воспоминания и письма
Капица. Воспоминания и письма

Анна Капица – человек уникальной судьбы: дочь академика, в юности она мечтала стать археологом. Но случайная встреча в Париже с выдающимся физиком Петром Капицей круто изменила ее жизнь. Известная поговорка гласит: «За каждым великим мужчиной стоит великая женщина». Именно такой музой была для Петра Капицы его верная супруга. Человек незаурядного ума и волевого характера, Анна первой сделала предложение руки и сердца своему будущему мужу. Карьерные взлеты и падения, основание МИФИ и мировой триумф – Нобелевская премия по физике 1978 года – все это вехи удивительной жизни Петра Леонидовича, которые нельзя представить без верной Анны Алексеевны. Эта книга – сокровищница ее памяти, запечатлевшей жизнь выдающегося ученого, изменившего науку навсегда. Книга подготовлена Е.Л. Капицей и П.Е. Рубининым – личным доверенным помощником академика П.Л. Капицы, снабжена пояснительными статьями и необходимыми комментариями.

Анна Алексеевна Капица , Елена Леонидовна Капица , Павел Евгеньевич Рубинин

Биографии и Мемуары / Документальное

Похожие книги

Мозг и его потребности. От питания до признания
Мозг и его потребности. От питания до признания

Написать книгу, посвященную нейробиологии поведения, профессора Дубынина побудил успех его курса лекций «Мозг и потребности».Биологические потребности – основа основ нашей психической деятельности. Постоянно сменяя друг друга, они подталкивают человека совершать те или иные поступки, ставить цели и достигать их. Мотиваторы как сиюминутных, так и долгосрочных планов каждого из нас, биологические потребности движут экономику, науку, искусство и в конечном счете историю.Раскрывая темы книги: голод и любопытство, страх и агрессия, любовь и забота о потомстве, стремление лидировать, свобода, радость движений, – автор ставит своей целью приблизить читателя к пониманию собственного мозга и организма, рассказывает, как стать умелым пользователем заложенных в нас природой механизмов и программ нервной системы, чтобы проявить и реализовать личную одаренность.Вы узнаете:• Про витальные, зоосоциальные и потребности саморазвития человека.• Что новая информация для нашего мозга – это отдельный источник положительных эмоций.• Как маркетологи, политики и религиозные деятели манипулируют нами с помощью страха. Поймете, как расшифровывать такие подсознательные воздействия.

Вячеслав Альбертович Дубынин , Вячеслав Дубынин

Научная литература / Научно-популярная литература / Образование и наука