о живом организме, как развивающемся целом. Но мы никогда не откажемся от таких упрощений, так как хорошо понимаем, что без них нам не удастся построить научного представления о жизни. И пока мы не получим сколько-нибудь ясного понимания химической структуры белков — а мы должны признать, что о структуре белковой молекулы и о ее синтезе мы до сих пор почти ничего не знаем — общую синтетическую картину обмена веществ в организме мы должны строить лишь на основании непроверенных, не подтвержденных фактами гипотетических соображений.
Мы имеем основание думать, что в природе нет таких энергетических процессов, которые не сопровождались бы возникновением все новых и новых разниц потенциалов. Когда разницы выравниваются, процесс останавливается. Жизнь есть сложнейший и многообразный непрерывно текущий энергетический процесс, и при ее анализе мы всегда стремимся установить изменение разницы потенциалов для каждого из частичных потоков энергии, для каждого акта раздражимости. К сожалению, это удается лишь в исключительно редких случаях. И все же мы должны стремиться: к осуществлению таких анализов хотя бы в немногих простейших случаях, в надежде, что когда-нибудь нам удастся синтезировать энергетическую картину развивающегося яйца в формулах меняющейся разницы потенциалов в различных пунктах силового поля.
Анализ формы сопряжен с еще большими затруднениями и упрощениями, чем анализ обмена веществ и смены энергии. Форму организма, как правило, мы изучаем на трупах, т.е. уже на неживом объекте. Анализ строения организма на трупах сыграл огромную роль в развитии сравнительной анатомии и палеонтологии и положил основу для создания эволюционной теории. Но, пользуясь этим методом анализа строения организмов, мы чрезвычайно упрощаем всю проблему формы, выхолащиваем из нее элементы развития и каузальности. Синтетическая картина эволюции органических форм не вытекает непосредственно из данных анатомического анализа, а строится нами умозрительно при посредстве ряда гипотетических сопоставлений. Правда, мощное развитие молодой науки XX века — генетики дало в наши руки новый метод анализа формы, и когда-нибудь генетика станет действительно экспериментально-эволюционной наукой. Уже и теперь генетический анализ в некоторых случаях так далеко продвинулся вперед, что мы в состоянии по заранее намеченному плану синтезировать новые формы, так что этим уже вводится некоторый новый элемент каузальности в эволюционное учение, и сопоставляемые нами на основании анализа гипотезы подвергаются проверке на практике путем синтеза. Но, конечно, и здесь анализ привел к очень упрощенным представлениям: есть очень резкий качественный разрыв между комплексом заключенных в хромосомах генов и структурными особенностями организма. Несмотря на успешное развитие экспериментальной эмбриологии, этот разрыв до сих пор остается незаполненным фактическим материалом, и чтобы воссоздать цепь причинных связей, соединяющих заключенный в ядре яйца генотип с фенотипом развивающегося организма, нам приходится нагромождать одну на другую умозрительные гипотезы.
Учение о клетке с самого своего основания сто лет назад явилось одним из самых могущественных методов биологического анализа формы. Само собою разумеется, и здесь анализ сопровождался упрощением проблемы, и притом не только в первые десятилетия развития цитологии, когда на клетки смотрели как па строительные кирпичики определенной формы, но даже в то время, когда уже укрепилось представление о клетке как об элементарном организме, обладающем всеми жизненными свойствами. Конечно, многоклеточный организм не есть сумма тканей, а ткани пе только сумма отдельных клеток, по нам совершенно необходимо сумму разложить па слагаемые; и если мы когда-нибудь поймем, как происходит обмен веществ и смена энергии в той организованной обладающей определенной формой системе, которую мы вот уже в течение ста лет называем клеткой, то это расчистит путь для дальнейшего синтеза.