Читаем Жизнь такая же круглая как и Земля (СИ) полностью

Разложим для седьмого момента аварии вектор попадания события на составляющие синусные и косинусные. График иллюстрирующий это находится на рисунке 2.3.

Синусные составляющие Ах и косинусные составляющие Ау вычисляются по формуле:

                                            (2.2)

                   (2.3)


Модуль вектора определяется по формуле известной из математики:

(2.4)

Рисунок 2.3. – Разложение вектора седьмого события по синусным и косинусным составляющим.

Для единичного события модуль равен 1. Вычислим модуль вектора для десяти событий выхода из строя электрооборудования дрессировочного стана. Чем ближе модуль вектора к единице, тем больше закономерность на данной гармонике. Синусные составляющие вычислим по формуле:

(2.5)

где Tj – период исследуемой гармоники, Ах – синусная составляющая закономерности, Ji – время наступления i –той аварии. N- количество аварий.

Косинусные составляющие вычислим по формуле:

(2.6)

где Ау – косинусная составляющая закономерности.

Модуль закономерности вычислим по формуле:

(2.7)

где Аm – модуль закономерности на периоде исследуемой гармонике Tj.

Вычислим модуль закономерности на всех интересующих нас гармониках. Данный график представлен на рисунке 2.4

Рисунок 2.4. – Амплитудно - периодическая зависимость наступления аварий дрессировочного стана.

Как видно из данного графика на низких периодах функция ведет себя как резко – переменная, но на некоторых периодах достигает закономерности больше 50%, а на больших периодах ведет себя плавно и достигает значений больше 60%.

Выводы по второй главе:

Обнаружена закономерность в случайном процессе с помощью спектрального анализа. Существующую закономерность можно представить в виде спектра гармоник. На каждом периоде гармоники возможно рассчитать вероятность возникновения события. Вероятность возникновения события рассчитывается по синусным и косинусным составляющим.

3. МАТЕМАТИЧЕСКОЕ ОБОСНОВАНИЕ ПЛЯС РЯДОВ


Пляс ряды предназначены для анализа событий, в которых известно лишь время наступления этого события и ничего не известно о поведении функции между наступлениями события (например авария оборудования). Пляс ряды доказываются на основании рядов Фурье.

Пусть f(t) функция состояния некоторого события на рисунке 1. (в частном случае, если площадь под функцией равняется 1, то функция состояния является плотностью вероятности случайного события ).

Рисунок 1. – Функция состояния случайного процесса

Общее число событий N стремится к бесконечности. За период времени ∆t1 происходит А1 количество событий, за период времени ∆t2 происходит А2 количество событий и так далее.

Общее число интервалов m. Каждый интервал времени ∆t бесконечно малый и является интервалом дискретизации для преобразования Фурье.

При стремлении количества событий к бесконечности Пляс ряды автоматически трансформируются в ряды Фурье, которые уже доказаны.

Формулы данных рядов – формулы 1,2.


(1)

(2)


Где v – номер гармоники, f- опорная частота дискретизации, m - число интервалов дискретизации, t – текущее время. Fx(v) – синусная составляющая прямого преобразования Фурье и Пляс рядов, Fу(v) – косинусная составляющая прямого преобразования Фурье и Пляс рядов, Aq – для рядов Фурье – значение функции, а для Пляс рядов количество событий. В формуле 1 и 2 f – частота. А в Пляс рядах T- период.

Как известно из математики f=1/T. Поэтому с математической точки зрения все верно в доказательстве Пляс рядов.


Выше приведенное преобразование есть Пляс преобразованием и работает даже в тех случаях, когда не все интервалы времени заполнены событиями, каждому событию для Пляс радов приписывается единица (если в момент времени t случилось одно событие, то Aq=1).

.1. Проверим на примере роботу прямого и обратного Пляс преобразования.

Пусть есть функция состояния случайного процесса

(3)


График данной функции представлен на рисунке 2.

Рисунок 2. – Функция состояния случайного процесса.

Где функция позитивное событие позитивное, где функция негативна, событие противоположно, то есть негативное значение для прямого Пляс преобразования.

На основании данной функции можно составить поток событий (аналогично тому как по плотности вероятности получают поток случайных событий). Где функция больше по модулю, для этих интервалов происходит больше событий.

Позитивный поток событий:


Негативный поток событий:


Поскольку данная функция состояния периодическая (период 40), то можно продолжить поток событий и довести количество событий как позитивных, так и негативных до 90(для увеличения точности расчета).

Таблица 1. - Позитивный поток событий:


Таблица 2. - Негативный поток событий:


Прямое Пляс преобразование для косинусных составляющих:

(3.4)

Для синусных составляющих:

(3.5)

Амплитудно периодическая функция вычисляется по формуле

(3.6)


График амплитудно - периодической функции:

Рисунок 3. – Амплитудно – периодическая функция

Как видно из графика, мы отыскали искомую гармонику (с периодом 20 и 40).

Используя обратное Пляс преобразование по формуле:

(3.7)

Получим искомую функцию:

Рисунок 4. – Полученная функция состояния.

Перейти на страницу:

Все книги серии Пляс теория

Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"
Математическое обоснование первых трех заповедей блаженства Господа и Спасителя нашего Иисуса Христа (СИ) "Предупреждение: Не вычитано"

Я пришел к блаженству применяя мою теорию. Затем, прочитав Новый Завет.  Я был поражен, что  моя теория более подробно раскрывает Новый Завет. Так например, в первой заповеди блаженства сказано - Блаженны нищие духом, ибо их есть Царство Небесное. Что означает нищие духом? Исходя из моей теории нищие духом, - это означает не заставлять себя думать над проблемами, страхами, неприятностями. Ключевое в данной формулировке – не заставлять. Необходимо четко отличать в сознании когда вы заставляете себя думать над проблемой, и когда мысль крутится сама собой в голове. Та часть мыслей, которая сама собой крутится в Вашей голове является вне вашей воле. Вы не сможете их устранить. Но они не помешают Вам прийти к блаженству. Нужно только лишь не заставлять себя думать над проблемой. Это сделать на столько же легко настолько же и сложно. Разум привык все обдумывать. При этом не заставлять себя думать не подразумевает сильные усилия. Вы не напрягаетесь, а просто не заставляете себя думать.

Asus

Математика / Православие / Христианство / Прочая старинная литература / Книги по психологии

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии