Читаем Жизнь замечательных веществ полностью

Термин «кератин» происходит от греческого слова «кера» – рог. Рождение этого названия датируется серединой XIX века. Первое упоминание о кератине появилось в литературе в научной работе 1849 года, в которой говорится, что белок «кератине» Саймона (именно так – «Simon’s keratine») входит в состав рогов, волос и копыт. К сожалению, это единственное упоминание о вероятном первооткрывателе кератина – Саймоне, и история не донесла до нас более подробную информацию о нем. Столь ранее описание кератина как белка, возможно, связано с тем, что кератин (как и большинство других фибриллярных белков) не похож на другие природные полимеры, с которыми работали химики XIX века: в отличие от большинства белков, открытых на заре становления биохимии, он не растворяется не только в воде, но и во множестве других растворителей, способных растворять белки. Не растворяется, однако к нашему счастью – представьте, что бы было, если бы он растворялся, – решили вы, скажем, помыть голову, а волосы смылись (хотя не исключаю, что некоторых такая перспектива даже порадовала бы).

Написать точную формулу кератина сложно, примерно так же сложно, как записать в общем виде формулу ДНК – и то и другое вещество индивидуально для того типа организма, из которого мы его выделяем. Сложность тут еще и в том, что молекулы кератинов различного типа обладают различным набором вторичных структур. В кератинах комбинируются и альфа-спиралевидная вторичная структура (правозакрученные спирали белка, сохраняющие устойчивость благодаря сетке водородных связей), так и бета-складчатая структура – в ней противолежащие цепи белков также за счет водородных связей объединяются в почти плоские листовидные агломераты. Отдельные участки кератинов с альфа– и бета-вторичной структурой связываются друг с другом за счет дисульфидных мостиков – связей S – S. Именно комбинация этих взаимодействий и придает кератинам их прочность. Различное соотношение альфа– и бета-фрагментов кератинов, различная плотность дисульфидных связей могут быть характерны и для кератинов одного организма, образующих различные ткани и обладающих различной прочностью – например, кератинов волос и ногтей.

Если говорить конкретно о кератине волос человека, то этот кератин является плотным в сравнении с другими веществами биологического происхождения веществом (плотность равна 1,3 г/см3), практически не проводит электричество, зато способен накапливать на поверхности статические заряды (вспоминаем детский сюжет «Ералаша»).



При комнатной температуре волос человека можно растянуть на 30–60 %. С повышением температуры и влажности окружающей среды растяжимость волоса увеличивается, а в чрезвычайно влажной атмосфере растяжимость может достичь 100 %. Прочность кератина при растяжении зависит от межмолекулярных связей. Прочность сухого волоса больше, чем мокрого. Это объясняется тем, что вода, вызывая набухание кератина, ослабляет межмолекулярные связи (например, водородные и солевые). На прочность сухого кератина разрыв дисульфидных связей существенно не влияет.



При создании новых межмолекулярных связей в кератине увеличивается прочность волос к растяжению и снижается их способность к сворачиванию (это происходит при известной парикмахерской процедуре, известной под названием «химия», суть которой заключается, если объяснять на пальцах, в том, что сначала дисульфидные и межмолекулярные водородные связи между молекулами кератина внутри волоса разрушаются, а потом опять же искусственно создаются при помощи тиогликолевой кислоты). Если говорить не о волосах, то дополнительные связи между нитями кератинов способствуют повышению устойчивости шерсти к действию различных химических реагентов, а также к действию моли, плесени, бактерий и ферментов.

Кератин волос человека характеризуется значительным сродством к воде. В нем содержится около 5 % связанной воды. Количество удерживаемой в кератине влаги при его насыщении достигает 33 % сухой массы. Диаметр волоса при насыщении его водой может увеличиваться приблизительно на 20 %, а длина – на 1–2 %.

Кератины обладают высокой химической стойкостью. Они более устойчивы к воздействию кислот, чем щелочей. Пищеварительный сок, выделяемый гусеницами моли, питающимися шерстью, имеет щелочную среду (рН = 9,9) и содержит вещества, способные разрушать дисульфидные связи кератинов, чем и пользуются эти проклятые поедатели шуб и других изделий из шерсти и меха.

Перейти на страницу:

Все книги серии Научпоп Рунета

Чердак. Только физика, только хардкор!
Чердак. Только физика, только хардкор!

Знаете ли вы, что такое время? А как придумали теорию струн? Какой химический элемент – самый большой в мире? А вот Дмитрий Побединский, физик, популярный видеоблогер и постоянный автор «Чердака», знает – и может рассказать!Существуют ли параллельные вселенные?Можно ли создать настоящий световой меч?Что почувствует искусственный интеллект при первом поцелуе?Как устроена черная дыра?На эти и другие вопросы, которые любого из нас способны поставить в тупик, отвечает Дмитрий – легко и доступно для каждого из нас.«Чердак: наука, технологии, будущее» – научно-образовательный проект крупнейшего российского информационного агентства ТАСС. Для 100 000 своих читателей команда «Чердака» каждый день пишет о науке – российской и не только, – а также рассказывает об интересных научно-популярных лекциях, выставках, книгах и кино, показывает опыты и отвечает на научные (и не очень) вопросы об окружающей действительности.В формате pdf A4 сохранен издательский дизайн.

Дмитрий Михайлович Побединский

Научная литература
Математика для гиков
Математика для гиков

Возможно, вам казалось, что вы далеки от математики, а все, что вы вынесли из школы – это «Пифагоровы штаны во все стороны равны». Если вы всегда думали, что математика вам не понадобится, то пора в этом разубедится. В книге «Математика «для гиков» Рафаэля Розена вы не только узнаете много нового, но и на практике разберете, что математикой полон каждый наш день – круглые крышки люков круглы не просто так, капуста Романеско, которая так привлекает наш взгляд, даже ваши шнурки, у которых много общего с вашей ДНК или даже ваша зависть в социальных сетях имеет под собой математические корни.После прочтения вы сможете использовать в разговоре такие термины как классификация Дьюи, Числа Фибоначчи, равновесие Нэша, парадокс Монти Холла, теория хаоса, подготовитесь к тексту Тьюринга, узнаете, как фильм получает Оскар, и что это за эффект бразильского ореха.

Рафаель Роузен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Прочая научная литература / Образование и наука
Модицина. Encyclopedia Pathologica
Модицина. Encyclopedia Pathologica

Эта книга – первый нескучный научпоп о современной медицине, о наших болячках, современных лекарствах и человеческом теле. Никита Жуков, молодой врач-невролог из Санкт-Петербурга, автор ультрапопулярного проекта «Encyclopatia» (от Encyclopedia pathologicae – патологическая энциклопедия), который посещают более 100 000 человек в день.«Модицина» – это критика традиционных заблуждений, противоречащих науке. Серьезные дядьки – для которых Никита, казалось бы, не авторитет – обсуждают его научно-сатирические статьи на медицинских форумах, критикуют, хвалят и спорят до потери пульса.«Минуту назад вы знали, что такое магифрения?» – encyclopatia.ru.«Эта книга – другая, не очень привычная для нас и совершенно непривычная для медицины форма, продолжающая традиции принципа Питера, закона Мерфи, закона Паркинсона в эпоху интернета», – Зорин Никита Александрович, M. D., психиатр, Ph.D., доцент, член президиума московского отделения Общества специалистов доказательной медицины (ОСДМ).В формате pdf A4 сохранен издательский дизайн.

Никита Жуков , Никита Эдуардович Жуков

Здоровье / Медицина / Энциклопедии / Прочая научная литература / Словари и Энциклопедии

Похожие книги

Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии
Складки на ткани пространства-времени. Эйнштейн, гравитационные волны и будущее астрономии

Гравитационные волны были предсказаны еще Эйнштейном, но обнаружить их удалось совсем недавно. В отдаленной области Вселенной коллапсировали и слились две черные дыры. Проделав путь, превышающий 1 миллиард световых лет, в сентябре 2015 года они достигли Земли. Два гигантских детектора LIGO зарегистрировали мельчайшую дрожь. Момент первой регистрации гравитационных волн признан сегодня научным прорывом века, открывшим ученым новое понимание процессов, лежавших в основе формирования Вселенной. Книга Говерта Шиллинга – захватывающее повествование о том, как ученые всего мира пытались зафиксировать эту неуловимую рябь космоса: десятилетия исследований, перипетии судеб ученых и проектов, провалы и победы. Автор описывает на первый взгляд фантастические технологии, позволяющие обнаружить гравитационные волны, вызванные столкновением черных дыр далеко за пределами нашей Галактики. Доступным языком объясняя такие понятия, как «общая теория относительности», «нейтронные звезды», «взрывы сверхновых», «черные дыры», «темная энергия», «Большой взрыв» и многие другие, Шиллинг постепенно подводит читателя к пониманию явлений, положивших начало эре гравитационно-волновой астрономии, и рассказывает о ближайшем будущем науки, которая только готовится открыть многие тайны Вселенной.

Говерт Шиллинг

Научная литература / Прочая научная литература / Образование и наука
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали
Механизм Вселенной: как законы науки управляют миром и как мы об этом узнали

Обладатель ученой степени в области теоретической химической физики, старший научный сотрудник исследовательской группы по разработке новых лекарств Скотт Бембенек в лучших традициях популярной литературы рассказывает, как рождались и развивались научные теории. Эта книга — уникальное сочетание науки, истории и биографии. Она доступным языком рассказывает историю науки от самых ранних научных вопросов в истории человечества, не жертвуя точностью и корректностью фактов. Читатель увидит: — как энергия, энтропия, атомы и квантовая механика, составляющие основу нашей Вселенной, управляют миром, в котором мы живем; — какой трудный путь прошло человечество, чтобы открыть законы физических явлений; — как научные открытия (и связанные с ними ученые) сформировали мир, каким мы его знаем сегодня.

Скотт Бембенек

Научная литература