Читаем Журнал "Компьютерра" N745 полностью

Поэтому германские кораблестроители, объединенные в German Submarine Consortium, cоздавая подводную лодку "тип 212" (четыре лодки вступили в строй в 2005-07 гг.), решили умножить преимущества тихого электрического хода и дополнили дизели и аккумуляторы воздухонезависимой пропульсивной системой. Дело в том, что классическая дизельная субмарина зависит от атмосферного воздуха. Поначалу для его забора лодкам приходилось всплывать в пустынном или ночном море.

Ближе к концу Второй мировой авиация, снабженная поисковыми радарами, загнала субмарины на перископную глубину. Воздух к двигателям тогда поступал через шноркели, дыхательные трубки. Но дизеля довольно громогласны, да и быть привязанным к поверхности не слишком удобно. Решение искали в химии, в употреблении богатых кислородом веществ. Германский инженер Хельмут Вальтер (900-1980) сконструировал в 1940 году экспериментальную лодку V80, с турбинами, работавшими на высококонцентрированной перекиси водорода.

V80 достигала скорости подводного хода в 28,1 узла — при том, что лодки того времени развивали под электромоторами максимум десяток узлов. Однако рекордные характеристики обеспечивались высоким расходом перекиси в турбинах. Для боевого применения были созданы субмарины "тип XVIIB". Наряду с пероксидными турбинами полного хода они оснащались и обычными дизелями.

В главных двигателях кораблей перекись водорода, несмотря на послевоенные опыты британцев с высокоскоростными лодками HMS Explorer и HMS Еxcalibur, не прижилась, но прочно обосновалась в торпедах. А германские инженеры, создавая "тип 212", добивались прежде всего не максимизации хода, но минимизации шумов и пользовались совсем другой, электрохимической, технологией — топливными элементами.

Описанные в 1839 году английским юристом и химикомлюбителем Уильямом Гроувом, эти устройства, получавшие электроэнергию из кислорода и водорода, были высоко оценены отцом электрохимии Вильгельмом Оствальдом, полагавшим в 1894 году, что именно его отрасль знания найдет способ получения больших количеств дешевой энергии, скажем, окислением угля кислородом воздуха в топливных элементах. Пока мы весьма далеки от появления таких технологий, хотя в развитии топливных элементов и произошел скачок в начале 1960-х годов, когда США в рамках космической программы тратили на исследования в этой области десятки миллионов долларов. В результате были созданы пригодные для практического употребления топливные элементы, работавшие, как некогда у Гроува, на кислороде и водороде.

(Впрочем, именно эти газы служили топливом для ракет Saturn.Они обеспечивали астронавтов, летавших на Gemini и Apollo, не только электричеством, но и водой — где-то фунт на каждый выработанный кВт-час. Водичка, правда, была насыщена водородом, что вызывало в организме специфические физиологические явления.[В отличие от любимой на российских полигонах охлажденной кислородом воды, которая благотворно действует на организм, особенно после другого любимого ракетчиками напитка])


Вот такие, водородно-кис лород ные топливные элементы, с разработанной фирмой Siemens протонообменной мембраной, и установили германские инженеры на лодки "тип 212". На головной корабль U31 — девять элементов по 30-40 кВт каждый; на последующих U32, U33, U34 — пару топливных элементов по 120 кВт. Они приводят в действие синхронный электродвигатель на постоянных магнитах Permasyn фирмы Siemens мощностью 1700 кВт, крутящий семилопастной винт. Полный ход в подводном положении, достигающий 20 узлов, как мы видим из соотношения мощностей, может быть дан только под аккумуляторами, подобно тому, как аккумуляторы обеспечивают разгон некоторых гибридных автомобилей. Есть и 16-цилиндровый дизель — он обеспечивает 12-узловой надводный ход и зарядку аккумуляторов. Ну а топливные элементы служат для длительного, до трех недель, малошумного подводного хода.

Безусловно, конструкция лодок "тип 212" порождает ряд вопросов. Даже кислород вызывает горение в своей атмосфере железа, являющегося важнейшим конструкционным материалом.[Вспомним гибель экипажа Apollo 1, сговевшего в кислородной атмосфере] Ну а водороду человечество обязано эффектным dзрывом дирижабля Hindenburg и одноименным синдромом (боязнью водорода инженерами).

Германские конструкторы вынесли цистерны с водородом и кислородом за пределы обитаемого прочного корпуса субмарины, разместив их в легком негерметичном корпусе, придав ему форму, улучшающую мореходные качества лодки. Окажется ли такое решение достаточным для обеспечения безопасности боевого корабля — покажет время, но пока отметим, что речь идет не о том, что у военных появилось нечто такое, до чего шпакам далеко (то есть — до массовых авто на топливных элементах), а о применении для решения спе ци фических задач узкоспециализированных (и дорогих!) технологий. Да и израильтяне выбрали для своих лодок класса Dolphin тот же самый, но лишенный топливных элементов проект.

Перейти на страницу:

Похожие книги

Фреймы для представления знаний
Фреймы для представления знаний

В книге описывается новый подход к решению проблемы представления знаний в системах искусственного интеллекта. В основе его лежит система фреймов — особых структур данных для понятийного представления стереотипных ситуаций в рамках общего контекста знаний о мире. С этих позиций дается описание механизмов человеческого мышления, распознавания образов, восприятия зрительной и слуховой информации, а также проблемы лингвистики, обучения и методы решения задач. Автор книги — известный американский ученый, специалист по искусственному интеллекту.Книга предназначена для широкого круга научных и инженерно-технических работников, интересующихся созданием искусственного интеллекта. Она может служить хорошим пособием для студентов, специализирующихся в этой области.

Марвин Мински

Зарубежная компьютерная, околокомпьютерная литература
Создание трилогии BioShock. От Восторга до Колумбии
Создание трилогии BioShock. От Восторга до Колумбии

Всего за три игры сага BioShock заняла особое место в сердцах игроков. Она может похвастаться проработанными и совершенно уникальными персонажами и мирами. Действие первых двух частей происходит в подводном городе Восторг, где игрок погружается в стиль ар-деко и атмосферу 1950-х годов. Третья часть, BioShock Infinite, переносит вас в 1912 год и приглашает исследовать небесный город Колумбия в сеттинге стимпанка.В книге вас ждут:[ul]рассуждение об источниках вдохновения создателя серии Кена Левина;исследование уникального геймплея и механик;подробности разработки игр франшизы от идеи до выпуска;глубокий анализ сюжета, тем и персонажей каждой части.[/ul]Авторы отдают дань уважения популярной серии игр, которая, несмотря на короткую историю, уже получила признание критиков.В формате PDF A4 сохранен издательский макет книги.

Мехди Эль Канафи , Николя Курсье , Рафаэль Люка

Зарубежная компьютерная, околокомпьютерная литература