Читаем Журнал «Компьютерра» № 11 от 20 марта 2007 года полностью

— Системы датамайнинга устроены не так, как системы поиска по вебу (Google, Yahoo), поскольку датамайнинг работает обычно с цифровыми базами данных и задает другие вопросы, нежели Google. Обычно эти системы реализуют различные методы очистки и препроцессинга, а затем применяется основное ядро алгоритмов. Самые важные задачи, решаемые этими алгоритмами, — классификация, кластеризация, визуализация. Процесс датамайнинга требует множества итераций, как показано на рисунке. Важнейшая алгоритмическая часть — использование алгоритмов машинного обучения, то есть построение модели; для датамайнинговой системы это так же важно, как двигатель для спортивного автомобиля. Однако основные усилия обычно уходят на подготовку данных. Заинтересованных читателей приглашаю познакомиться с моими (свободно доступными) лекциями.


Кандидаты в великие

На конференции KDD-2006 несколько известных исследователей в области извлечения знаний из данных предложили задачи, которые в будущем могут претендовать на роль «великих вызовов», бросаемых повседневной практикой.

• Провести аннотацию 1000 Часов цифрового видео в течение одного часа. Согласно автору предложения Шабану Джерабе (Chabane Djeraba), в настоящее время это требует тысяч человеко-часов при ручной работе. Под аннотацией подразумевается краткое описание происходящего. Например, сегодня невозможно без выполненной человеком аннотации выделить в записи баскетбольного матча эпизоды атаки и обороны каждой команды. Ручная аннотация одной фотографии для Национального географического общества требует двадцать минут.


• ВикипедиЯя-тест (Lise Getoor, Лиз Гетур). По сборнику статей, созданному либо в режиме партисипативной журналистики (то есть по принципу наполнения Википедии), либо с использованием автоматических инструментов поиска линков по требуемой тематике, определить, какой из этих двух методов использовался: то есть составлен ли сборник машиной или людьми (и в каком случае качество оказалось выше)? Автор предложения указывает на связь этого вызова с другим, брошенным специалистам по сжатию информации: сжать 100 мегабайт Википедии до 18 мегабайт, не потеряв ни единого бита (за это уже назначен приз Хаттера в 50 тысяч долларов).


• Оценить миллиард прогнозирующих моделей (Robert Grossman, Роберт Гроссман). В ходе многолетней практики датамайнинга было построено великое множество статистических моделей для различных типов и конкретных ансамблей данных. Во многих случаях для одних и тех же массивов данных строится несколько моделей, чтобы ухватить их характеристики разных видов. Пример: имеется информация от 833 датчиков движения транспорта в Чикаго. Задача состоит в автоматическом определении ситуаций, когда в транспортном потоке возникают аномалии, происходит что-то необычное (но не простая пробка!). Данные сегментировались по дням, часам и участкам дороги, что приводило к появлению 7х24х250 = 42000 автоматически генерируемых статистических моделей — хотелось бы значительно сократить их число! Подобная ситуация возникает и в онлайновом маркетинге (отдельная модель поведения для каждого клиента), в перспективных подходах к оценке эффективности лекарств на основе индивидуального генотипа и т. д. Так что миллиард набирается легко — вопрос в том, как радикально уменьшить это число.


• Разработка систем анализа текстов (text mining), способных сдать обыЧные экзамены на понимание текста SAT, GRE, GMAT (Ronen Feldman, Ронен Фелдман). Эту задачу с оптимизмом комментирует в своих ответах Григорий Пятецкий-Шапиро. Она покруче даже стандартного теста Тьюринга (определить, машина или человек отвечает на ваши вопросы), по поводу которого тоже было много оптимизма, в том числе и у его гениального автора. Однако не будем забывать, что этот вызов — лишь планка, которую автор предложения поднимает так высоко в надежде на достижение более приземленных практических целей: довести точность реализации реляционных запросов с нынешних 70—80% до 98—100%, причем в самой общей ситуации.

Кроме этого, был предложен еще один весьма важный вызов — функциональная аннотация белков. Однако формулировка здесь так сложна, а задач так много, что мы ограничимся лишь констатацией — это направление, датамайнинг в геномике и протеомике, тоже служит источником великих вызовов (напомним, кстати, что недавно назначен приз X PRIZE за снижение стоимости сканирования генома до 10 тысяч долларов при повышении производительности до ста геномов за десять дней).

Ну а для полноты картины упомянем и конкурс, который состоится на конференции KDD-2007. Участникам предоставляется тренировочный массив данных Netflix, в котором собрано больше 100 млн. рейтингов (по пятибалльной шкале) по 18 тысячам фильмов от 480 тысяч случайно выбранных анонимных пользователей Netflix (то есть людей, бравших у Netflix DVD напрокат), с 1998 по 2005 год. Вот одна из двух задач, по которым будет проводиться состязание:

Перейти на страницу:

Похожие книги

Компьютер для тех, кому за…
Компьютер для тех, кому за…

В наш век высоких технологий без компьютера не обходится практически ни один человек. Но что делать, если вам уже за…, а компьютер вы так и не освоили? Не стоит отчаиваться! Эта книга была написана специально для тех, кто по каким-то причинам не смог освоить его раньше. Легким и доступным языком в книге изложены основные принципы работы на компьютере. Вы узнаете, как создать документ в текстовом редакторе, выстроить таблицы и диаграммы в экселе, освоите графический редактор, который позволит вам рисовать и редактировать фото и рисунки, научитесь самостоятельно подключать принтер и печать, общаться с родными и друзьями по скайпу и ICQ, узнаете, какие бывают игры, как выбрать игру для себя, и многое-многое другое.Никогда не поздно осваивать что-то новое! А уж тем более — компьютер. Он откроет вам целый мир безграничных возможностей. Не упустите свой шанс узнать что-то новое и интересное — дайте компьютеру прочно войти в вашу жизнь. Ведь пользоваться им так же просто, как и обычным телефоном, только в тысячу раз интереснее!

Оксана Грибова

Зарубежная компьютерная, околокомпьютерная литература / Интернет / Программное обеспечение / Прочая компьютерная литература / Книги по IT