Читаем Журнал «Компьютерра» №36 от 04 октября 2005 года полностью

Свои имена уравнениям дали французский инженер Клод-Луи Навье (Claude-Louis Navier), выдающийся мостостроитель, разработавший первую в мире теорию подвесных мостов, и Джордж Габриэль Стокс (George Gabriel Stokes), научные заслуги которого в основном относятся к математической физике и дифференциальной геометрии. Кстати, Стокс дал имя британской единице вязкости.

Неудивительно, что эти уравнения долгое время привлекали внимание математиков всего мира. И здесь есть серьезные причины для гордости за отечественную науку: весомый вклад в развитие теории уравнений Навье-Стокса внесла Ольга Александровна Ладыженская, одна из замечательных представителей петербургской математической школы. Главным результатом Ладыженской в этой области было полное решение проблемы в двумерном случае: Ольга Александровна доказала однозначную разрешимость задачи. В трехмерном случае она получила частичные результаты: доказала однозначную разрешимость уравнений на конечном промежутке времени, а также решила общую задачу в предположении малости так называемого числа Рейнольдса (этот параметр задает соотношение между инерцией и вязкостью; при больших значениях числа Рейнольдса поток становится турбулентным). А вот вопрос о единственности так называемого слабого решения Хопфа, которое существует для бесконечного промежутка, до сих пор остается открытым - и за ответ на него решение Clay Mathematical Institute готов заплатить миллион долларов.

Вклад Ладыженской в математику, разумеется, не ограничивался решением двумерных уравнений Навье-Стокса: достаточно сказать, что работы, выполненные ею в сотрудничестве со своей ученицей Ниной Николаевной Уральцевой[Мне посчастливилось слушать курс матфизики у Нины Николаевны и лично знать Ольгу Александровну (благодаря поддержке которой я и оказался в СПбГУ); правда, уроки на пользу не пошли, и при выборе научного пути матфизике я предпочел алгебру и информатику], фактически закрыли цикл исследований по 19-й и 20-й проблемам Гильберта. Эти фантастические достижения навсегда вписали Ольгу Александровну в историю математики. Но, на мой взгляд, не менее фантастическим является ее научное долголетие. До последних дней жизни (это не штамп и не преувеличение) Ольга Александровна активно занималась научной деятельностью, редактировала многочисленные научные сборники, участвовала в конференциях - и ушла из жизни 12 января 2004 года, немного не дожив до своего восемьдесят второго дня рождения…

Но вернемся к уравнениям Навье-Стокса. Аналитическому решению они не поддаются, однако проектировать подводные лодки и особенно самолеты (разумеется, движение воздуха описывается теми же уравнениями, только вязкость у воздуха гораздо меньше, чем у воды, - а, значит, турбулентность больше, и решать уравнения методом Ладыженской не получается) все-таки нужно. Что делать? Ответ прост и для физиков традиционен: решать уравнения приближенно. И здесь, конечно, компьютерные технологии пришлись ко двору. Возник целый раздел на грани матфизики и computer science - вычислительная динамика жидкостей и газов (computational fluid dynamics, CFD).

Wikipedia предлагает целую коллекцию ссылок на программные продукты (как коммерческие, так и свободные), реализующие различные задачи вычислительной динамики. Примечательно, что один из самых успешных проектов - система OpenFOaM (Open Field Operation and Manipulation) - начинал свой путь как коммерческий, закрытый продукт, а затем был переведен разработчиками под GPL. Наверное, его и можно порекомендовать желающим всерьез заняться этим направлением - для него написано множество расширений и библиотек, и благодаря открытой архитектуре проекта и активному сообществу разработчиков количество этих расширений увеличивается. А красивые картинки, например, получаются из Gerris Flow Solver

, хотя, конечно, глаз вряд ли способен насладиться рисованными векторными полями так же, как видом трехмерной, играющей на солнце всеми красками радуги жидкости. Для всевозможных пакетов трехмерного моделирования написано множество CFD-плагинов, позволяющих добавлять в трехмерную сцену «физически точные» картины различных течений. Обычно они стоят немалых денег (например, RealFlow, плагин для 3DS MAX, продается по сверхнизкой цене всего лишь в 1080 долларов), но в России, как известно, цена софта - штука весьма и весьма условная…

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже