С другой стороны, правильный семиугольник имеет аналогичное уравнение степени 6, которая не является степенью двойки. Так что вы определенно не можете построить правильный семиугольник при помощи линейки и циркуля[19]
. Поскольку Евклид строит пятиугольник, его уравнение тоже должно сводиться к серии квадратных уравнений. Применив алгебру, несложно выяснить, как именно. Вооруженный этой идеей, Гаусс обнаружил, что уравнение семнадцатиугольника тоже сводится к серии квадратных уравнений. Во-первых, 16 = 24, то есть степень двойки, что необходимо для разложения в систему квадратных уравнений, хотя не всегда достаточно. Во-вторых, 17 – простое число, что позволило Гауссу найти эту систему.Любой знающий математик мог проследить за рассуждениями Гаусса после того, как тот показал верный путь, но никто другой даже не заподозрил, что Евклид в свое время назвал не все правильные многоугольники, которые можно построить.
Неплохо для девятнадцатилетнего юноши.
Благодаря финансовой помощи герцога Гаусс продолжал двигаться вперед семимильными шагами, особенно в теории чисел. С детства он умел молниеносно считать и мог мгновенно проделывать в уме сложные арифметические расчеты. В докомпьютерную эпоху такая способность была очень полезна. Она помогала ему быстро продвигаться вперед в теории чисел, и репутация молодого Гаусса заметно подросла, когда он написал один из самых известных исследовательских текстов в истории математики – «Арифметические исследования» (Disquisitiones Arithmeticae). Эта книга сделала для теории чисел то, что Евклид двумя тысячелетиями раньше сделал для геометрии. Благодаря субсидии, которую выделил пунктуальный герцог, книга вышла в 1801 г.; автор в ответ посвятил книгу спонсору.
Один из основных методов, используемых в книге, представляет собой типичный пример способности Гаусса синтезировать из массы неорганизованных и сложных результатов простые понятия. Сегодня мы называем этот метод модульной арифметикой. Многие ключевые результаты в теории чисел зиждутся на двух простых вопросах:
При каких условиях одно заданное число делится на другое?
Если не делится, то как связаны эти два числа?
Проведенное Ферма различие между 4
0 4 8 12 16 20…
кратны четырем. Остальные четные числа
2 6 10 14 18…
не кратны. Мало того, каждое из них при делении на 4 дает остаток 2; то есть они представляют собой сумму числа, кратного 4, и «остатка» 2. Аналогично нечетные числа дают в остатке либо 1:
1 5 9 13 17 21…
либо 3:
3 7 11 15 19 23…
До того как Гаусс взял это дело в свои руки, обычно говорили, что эти последовательности содержат числа вида 4
До сих пор все это только терминология, но главное здесь – структура. Если вы складываете два числа или перемножаете их и спрашиваете, с которым из чисел 0, 1, 2, 3 сравним (все по модулю 4) результат, то оказывается, ответ на этот вопрос зависит только от того, с какими из чисел сравнимы первоначально взятые вами числа. К примеру:
– если вы складываете числа, сравнимые с 2 и 3, то результат всегда сравним с 1;
– если вы перемножаете числа, сравнимые с 2 и 3, то результат всегда сравним с 2.
Посмотрим на примере. Число 14 сравнимо (по-прежнему все происходит по модулю 4) с 2, а число 23 – с 3. Их сумма равна 37 и должна быть сравнима с 1. Так и есть: 37 = 4 × 9 + 1. Произведение этих чисел равно 322 = 4 × 80 + 2.
Возможно, это звучит немного глуповато, но такая система позволяет нам отвечать на вопросы о делимости на 4 при помощи всего лишь этих четырех «классов сравнимости». Применим эту идею к простым числам, представляющим собой сумму двух полных квадратов. Любое целое число сравнимо (по модулю 4) с 0, 1, 2 или 3. Следовательно, их квадраты сравнимы с квадратами этих четырех чисел, то есть с 0, 1, 4 или 9, а те, в свою очередь, сравнимы с 0, 1, 0, 1 соответственно. Перед вами очень быстрый и очень простой способ доказать, что любой квадрат имеет вид 4