Среди ранних работ Буля есть одно простое открытие, приведшее в конечном итоге к созданию теории инвариантов – области алгебры, оказавшейся внезапно на самом острие науки. При исследовании алгебраических уравнений формулу иногда можно упростить, если заменить переменные в ней подходящими выражениями с новым набором переменных. Решаем это упрощенное уравнение, находим значения новых переменных, затем отступаем назад и находим значения первоначальных. Именно так решали уравнения в Вавилоне и в Европе эпохи Возрождения.
Особенно существенный класс изменений переменных наблюдается в тех случаях, когда новые переменные представляют собой линейные комбинации старых – выражения вроде 2
с двумя переменными. Важной величиной в теории таких форм играет так называемый дискриминант b2
– 4Такое на первый взгляд совпадение имеет геометрическое объяснение. Это
Наблюдение Буля, связанное с дискриминантом, казалось всего лишь забавным фактом, до тех пор пока несколько математиков, самыми известными среди которых были Артур Кэли и Джеймс Джозеф Силвестр, не обобщили его для форм более высокого порядка с двумя или большим числом переменных. Эти выражения тоже имеют инварианты, влияющие также на значимые геометрические свойства связанной с ними гиперповерхности, определяемой приравниванием этой формы нулю. Из этого выросла целая отрасль, где математики зарабатывают себе рыцарские шпоры, вычисляя инварианты все более сложных выражений. Позже Гильберт (глава 19) доказал две фундаментальные теоремы, которые закрыли эту тему практически целиком, до тех пор пока она не ожила в более общей форме. Она и сегодня представляет интерес и имеет важные применения в физике, а новую жизнь ей придало развитие компьютерной алгебры.
Исследование, которое сделало Буля широко известным среди математиков и специалистов по информатике – и вообще в любом доме, где пользуются Гуглом, поскольку это вариант Булева поиска, – все больше занимало его мысли. Буль всегда видел в математических понятиях внутреннюю простоту. Ему нравилось формулировать общие принципы, выражать их в символьной форме – и дальше за него думали символы. В «Законах мышления» эта программа была реализована для правил формальной логики. Главной идеей произведения была интерпретация этих правил как алгебраических операций с символами, представляющими некие утверждения. Поскольку логика – не арифметика, некоторые из обычных алгебраических правил в ней могут оказаться неприменимы; с другой стороны, в ней могут возникнуть новые законы, не применимые к арифметике. Результат, известный как Булева алгебра, позволяет доказывать логические утверждения посредством алгебраических вычислений.