Читаем Звезды: их рождение, жизнь и смерть полностью

Оставляя пока в стороне очень важный вопрос о причинах, по которым звезда имеет совершенно определенную светимость, сразу же подчеркнем, что если считать источником энергии звезды освобождение ее гравитационной энергии в процессе сжатия (как это полагали в конце XIX века), то мы столкнемся с очень серьезными трудностями. Дело не в том, что для обеспечения наблюдаемой светимости радиус Солнца ежегодно должен уменьшаться примерно на 20 метров — такое ничтожное изменение размеров Солнца современная техника наблюдательной астрономии обнаружить не в состоянии. Трудность в том, что запаса гравитационной энергии Солнца хватило бы лишь на 30 миллионов лет излучения нашего светила при условии, конечно, что оно излучало в прошлом примерно так же, как сейчас. Если в XIX веке, когда известный английский физик Томпсон (лорд Кельвин) выдвинул эту «гравитационную» гипотезу поддержания солнечного излучения, знания о возрасте Земли и Солнца были весьма туманными, то сейчас это уже не так. Геологические данные с большой надежностью позволяют утверждать, что возраст Солнца исчисляется по крайней мере в несколько миллиардов лет, что в сотню раз превышает «кельвинскую шкалу» для его жизни.

Отсюда следует очень важный вывод, что ни тепловая, ни гравитационная энергия не могут обеспечить столь длительное излучение Солнца, а также подавляющего большинства других звезд. Наш век уже давно указал на третий источник энергии излучения Солнца и звезд, имеющий решающее значение для всей нашей проблемы. Речь идет о ядерной энергии (см. § 3). В § 8 мы более подробно и конкретно будем говорить о тех ядерных реакциях, которые протекают в звездных недрах.

Величина запаса ядерной энергии W

я = 0,008Xc2
M 1052 эрг превышает сумму гравитационной и тепловой энергии Солнца более чем в 1000 раз. То же самое относится и к подавляющему большинству других звезд. Этого запаса хватит для поддержания излучения Солнца на сто миллиардов лет! Конечно, отсюда не следует, то Солнце будет излучать в течение столь огромного промежутка времени на современном уровне. Но во всяком случае ясно, что запасов ядерного горючего у Солнца и звезд более чем достаточно.

Важно подчеркнуть, что ядерные реакции, происходящие в недрах Солнца и звезд, являются термоядерными. Это означает, что реагируют хотя и быстрые (а поэтому достаточно энергичные) заряженные частицы, но все же

тепловые. Дело в том, что частицы газа, нагретого до некоторой температуры, имеют максвеллово распределение скоростей. При температуре 107 К средняя энергия тепловых движений частиц близка к 1000 эВ. Эта энергия слишком мала для того, чтобы, преодолев кулоновские силы отталкивания при столкновении двух ядер, попасть в другое ядро и тем самым вызвать ядерное превращение. Необходимая энергия должна быть по крайней мере в десятки раз больше. Существенно, однако, что при максвелловом распределении скоростей всегда найдутся частицы, энергия которых будет значительно превышать среднюю. Их, правда, будет мало, но только они, сталкиваясь с другими ядрами, вызывают ядерные превращения и, следовательно, выделение энергии. Количество таких аномально быстрых, но все же «тепловых» ядер весьма чувствительным образом зависит от температуры вещества
. Казалось бы, при такой ситуации ядерные реакции, сопровождающиеся выделением энергии, могут быстро повысить температуру вещества, отчего в свою очередь их скорость резко увеличивается, и звезда смогла бы за сравнительно короткое время израсходовать свой запас ядерного горючего путем увеличения своей светимости. Ведь энергия не может накапливаться в звезде — это привело бы к резкому увеличению давления газа и звезда просто взорвалась бы как перегретый паровой котел. Поэтому вся выделившаяся в недрах звезд ядерная энергия должна покидать звезду; этот процесс и определяет светимость звезды. Но в том-то и дело, что какие бы ни были термоядерные реакции, они не могут идти в звезде с произвольной скоростью. Как только, хотя бы в незначительной степени, произойдет локальный (т. е. местный) разогрев вещества звезды, последнее из-за возросшего давления расширится, отчего согласно формуле Клапейрона произойдет охлаждение. При этом скорость ядерных реакций сразу же упадет и вещество, таким образом, вернется к своему первоначальному состоянию. Этот процесс восстановления нарушенного вследствие локального разогрева гидростатического равновесия, как мы видели раньше, идет весьма быстро.

Перейти на страницу:

Все книги серии Проблемы науки и технического прогресса

Похожие книги

История космического соперничества СССР и США
История космического соперничества СССР и США

Противостояние СССР и США, начавшееся с запуска Советским Союзом первого спутника в 1957 году и постепенно вылившееся в холодную войну, послужило причиной грандиозных свершений в области освоения космоса. Эта книга включает в себя хронику как советских, так и американских космических исследований и достижений, подробное описание полета Найла Армстронга и База Олдрина на Луну, а также множество редких и ранее не опубликованных фотографий. Авторы книги — Вон Хардести, куратор Национального Смитсонианского аэрокосмического музея, и Джин Айсман, известный исследователь и журналист, показывают, каким образом «параллельные исследования» двух стран заставляли их наращивать темпы освоения космоса, как между США и СССР назревал конфликт, в центре которого были Джон Кеннеди и Никита Хрущев. Это история освоения космоса, неразрывно связанная с историей противостояния двух великих держав на Земле.

Вон Хардести , Джин Айсман

Астрономия и Космос / История / Технические науки / Образование и наука