Доказав, что в гетероструктурах можно эффективно управлять световыми и электронными потоками, и применив в своих исследованиях специальную методику, позволявшую варьировать ширину запрещенной зоны, показатель преломления, величину электронного сродства, эффективную массу носителей тока и другие параметры полупроводника, Алфёров в результате многочисленных экспериментов, ежедневно длящихся у него до часа ночи, смог подобрать идеальную гетеропару: арсенид алюминия и арсенид галлия (AIAs/GaAs), а затем GaAs/AIGaAs, отличавшуюся большей стойкостью к окислению на воздухе. Эти гетеропары вскоре обрели в мире электроники мировую известность.
На основе полученных гетеропар были созданы гетероструктуры, отвечавшие требованиям идеальной модели, и в 1969 г. сконструирован первый в мире полупроводниковый гетеролазер. Область применения лазеров поначалу была весьма ограниченной, поскольку они могли работать только при низких температурах, иногда не выше 20о К.
В 1970 г. на смену AIGaAs-системе Алфёровым и его сотрудниками были предложены соединения InGaAsP, позволившие создать более совершенные лазеры, нашедшие широкое применение в качестве источников излучения в волоконно-оптических линиях связи повышенной дальности.
В 1970-х гг. ученый разработал первые в мире технологии радиационно-стойких солнечных элементов на основе AIGaAs/GaAs-гетероструктур и организовал крупномасштабное производство гетероструктурных солнечных элементов для космических батарей. Одна из них была установлена в 1986 г. на космической станции «Мир» и эффективно проработала на орбите весь положенный ей срок эксплуатации.
В 1993 г. в лаборатории Алфёрова были сконструированы полупроводниковые лазеры на основе структур с квантовыми точками – «искусственными атомами».
В 1995 г. ученый продемонстрировал инжекционный гетеролазер с использованием квантовых точек на подложках GaAs, работающий в непрерывном режиме при комнатной температуре, что резко повысило возможность его применения и тут же развязало руки создателям быстродействующих элементов электронной техники.
У такого лазера не оказалось конкурентов – он практически безынерционен, его КПД превышает в несколько раз КПД прочих лазеров, а длину волны можно изменять на любую другую.
Исследования Алфёрова позволили кардинально улучшить параметры большинства полупроводниковых приборов, создать для оптической и квантовой электроники широчайшие возможности ее совершенствования и заложить основы принципиально новой электроники на основе гетероструктур – т. н. «зонной инженерии».
Предположения ученого, высказанные им 15 лет назад, что «в XXI веке на основе квантовых точек будут созданы уникальные по свойствам лазеры и транзисторы, появятся совершенно новые приборы и, наверное, возникнет то, что сегодня предсказать невозможно», сбылись.
Следующим шагом в развитии гетероструктур стало применение новых способов обработки информации, когда, смоделировав процесс, можно стало создавать структуры, состоящие из цепочек атомов, имеющих уже не микро-, а наноразмеры (нанометр – одна миллиардная доля метра), и на смену микроэлектронике получить нанотехнологии.
В многочисленных интервью и публикациях Ж.И. Алфёрова, весьма озабоченного состоянием науки и образования в современной России, можно найти много жестких и поучительных высказываний.
«Если развалится образование, остановится наука, то прекратится и… “воспроизводство гениев”. Наступит всеобщее мозговое затмение».
«Всегда полезно брать уроки у истории… Когда в 1921 году Рождественский, Иоффе и Крылов поехали в первую после Гражданской войны загранкомандировку закупать научное оборудование, а денег на это у государства не было, они обратились к Ленину и Луначарскому. И им выделили средства из золотого запаса. В Физико-технический институт поступили тогда 42 ящика с приборами, и по оснащению он стал одним из первых в мире. Чем не исторический урок для нынешнего российского руководства?»
Химия
ОСНОВНОЙ ЗАКОН ЕСТЕСТВОЗНАНИЯ