Читаем 100 великих научных достижений России полностью

Первым физической химией как наукой занялся М.В. Ломоносов. Он даже читал курс «Введение в истинную физическую химию» в 1752–1754 гг. Затем сто лет наука развивалась своим естественным путем, пока Бекетов вновь не втиснул ее в русло университетской программы. Эта научная и учебная новация была как нельзя более кстати. Во-первых, потому, что и сам Бекетов на примере своих теоретических выкладок и процесса алюминотермии прекрасно продемонстрировал принципы физической химии как самостоятельной науки, имеющей практическое применение. И во-вторых, открытый Д.И. Менделеевым в 1869 г. периодический закон химических элементов и ряд работ европейских ученых обрели в этой науке свое надежное основание.

Историки науки, отмечавшие неординарность общего бекетовского подхода к химии, любят говорить об ученом как о химике-философе. В то время как европейские химики занимались исключительно открыванием новых тел и новых соединений, Бекетов, не соблазняясь жаждой открытия новых фактов, «медленно шел по трудному пути теоретической химии и стремился к решению вопроса о том, где источник, где причина того, что в химии определяется термином “химическое сродство”».

На этот путь химик ступил во время 15-месячной командировки в научные учреждения Европы. Начал Бекетов с того, что в парижской Сорбонне у академика Ж.Б. Дюма стал изучать зависимость направления химических реакций от состояния реагентов и внешних условий. В 1858 г. ученый приступил к исследованию действия водорода на водные растворы солей серебра, цинка на хлориды бария и кремния, магния на фторид алюминия. В этих весьма опасных опытах, проводимых в запаянных стеклянных трубках, когда давление доходило до 100 атм, химик обнаружил, что водород, магний и цинк вытесняют металлы из их солей, то есть восстанавливают их.

Посвятив несколько лет исследованиям этих реакций восстановления металлов, химик убедился, что наибольшей устойчивостью (прочностью) обладают соединения противоположных по характеру элементов с наиболее близкими атомными весами (паями). Помимо этого Бекетов указал также на то, что количество тепла, выделяемое при соединении простых тел, представляет собою «разность между сродствами однородных и сродствами разнородных атомов» и что при реакции «менее плотное тело вытесняет более плотное». Определяя теплоты образования оксидов и хлоридов щелочных металлов, Бекетов впервые в мире получил безводные оксиды щелочных металлов.

Изучая вытеснение одних элементов другими и впервые наблюдая протекание реакции в двух направлениях, Бекетов установил, что на направление химической реакции влияет концентрация реагентов и давление, дал формулировку состояния равновесия. Предположив также, что химические явления связаны с относительными массами и расстояниями между центрами действующих частиц, ученый вплотную подошел к одному из главных химических законов – закону действующих масс, устанавливающему соотношение между массами реагирующих веществ в химических реакциях при равновесии, а также зависимость скорости химической реакции от концентрации исходных веществ. Этот закон в его классическом виде был сформулирован в 1867 г. норвежскими учеными К. Гульдбергом и П. Вааге.

Установив «вытеснительный ряд металлов», повторенный позднее электрохимическим рядом активности (напряжений), Бекетов в качестве наиболее сильных восстанавливающих агентов в этом ряду увидел глиний (алюминий) и магний. С их помощью ученый получил металлический барий, рубидий, цезий, хром, ванадий, марганец, вольфрам, освоил промышленное производство алюминия.

Описание опыта можно найти у самого Бекетова: «Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 частей из 33,3 бария и 66,7 глиния, или, иначе, на одну часть бария содержал две части глиния».

Типичная реакция с выделением огромного количества тепла Q (температура достигает 2000–3000 °C) имеет вид:

2Al + Cr2О3 = Al2О3 + 2Cr + Q.

Созданные Бекетовым основы методов алюминотермии и магниетермии позволили по аналогии создать позднее калиетермию и кальциетермию. Обобщает все эти методы металлотермия, с помощью которой удается получать титан, ниобий, цирконий, бор, уран, стронций, гафний, редкоземельные элементы, огнеупорный термиткорунд, магниды и другие металлы и сплавы.

Алюминотермия незаменима при сварке стальных трамвайных рельсов, проводов, труб, металлических конструкций. В место стыка засыпается термит (смесь порошка алюминия с железной окалиной), поджигается и буквально за минуту рельсы свариваются.

Говорят, химия – скучная вещь. Отнюдь. Однажды в кабинет Бекетова вбежал взволнованный слуга:

– Николай Николаевич! В вашей библиотеке воры!

Перейти на страницу:

Все книги серии 100 великих

100 великих оригиналов и чудаков
100 великих оригиналов и чудаков

Кто такие чудаки и оригиналы? Странные, самобытные, не похожие на других люди. Говорят, они украшают нашу жизнь, открывают новые горизонты. Как, например, библиотекарь Румянцевского музея Николай Фёдоров с его принципом «Жить нужно не для себя (эгоизм), не для других (альтруизм), а со всеми и для всех» и несбыточным идеалом воскрешения всех былых поколений… А знаменитый доктор Фёдор Гааз, лечивший тысячи москвичей бесплатно, делился с ними своими деньгами. Поистине чудны, а не чудны их дела и поступки!»В очередной книге серии «100 великих» главное внимание уделено неординарным личностям, часто нелепым и смешным, но не глупым и не пошлым. Она будет интересна каждому, кто ценит необычных людей и нестандартное мышление.

Рудольф Константинович Баландин

Биографии и Мемуары / Энциклопедии / Документальное / Словари и Энциклопедии

Похожие книги

Жизнь замечательных устройств
Жизнь замечательных устройств

Как прославиться химику? Очень просто! В честь него могут быть названы открытая им реакция, новое вещество или даже реагент! Но если этого недостаточно, то у такого ученого есть и ещё один способ оставить память о себе: разработать посуду, прибор или другое устройство, которое будет называться его именем. Через годы название этой посуды сократится просто до фамилии ученого — в лаборатории мы редко говорим «холодильник Либиха», «насадка Вюрца». Чаще можно услышать что-то типа: «А кто вюрца немытого в раковине бросил?» или: «Опять у либиха кто-то лапку отломал». Героями этой книги стали устройства, созданные учеными в помощь своим исследованиям. Многие ли знают, кто такой Петри, чашку имени которого используют и химики, и микробиологи, а кто навскидку скажет, кто изобрёл такое устройство, как пипетка? Кого поминать добрым словом, когда мы закапываем себе в глаза капли?

Аркадий Искандерович Курамшин

История техники