Согласно этой модели, посередине атома расположено ядро, заполненное положительно заряженными частицами, а вокруг него движутся отрицательные частицы — электроны. Ядро подобно Солнцу, а электроны напоминают планеты, обращающиеся по круговым орбитам. И если планеты удерживаются на своих орбитах силами гравитации, то электронам в этом помогает электромагнитное поле. Ядро очень массивное: в нем сконцентрирована почти вся тяжесть атома, и от столкновений с легкими электронами ему ни холодно ни жарко — оно спокойно продолжает свой путь. Поэтому альфа-частицы преимущественно проходили сквозь фольгу; с пути сбились только те из них, которым «посчастливилось» столкнуться со столь же тяжелыми ядрами металла.
Когда Резерфорд рассказал о своем открытии другим ученым, его планетарный атом сразу же вытеснил «кексовую» модель, созданную Джозефом Томсоном и являвшую собой положительно заряженное облако-тесто, в котором снуют электроны-изюминки (ядрá в модели не предполагалось). Более того, эксперимент, проведенный Марсденом и Гейгером, послужил образцом для всех последующих опытов в сфере ядерной физики — с той поры ученые наблюдали за поведениемэлементарных частиц, стреляя ими по атомам, отдельным ядрам либо целым металлическим пластинам.
Конечно, развитие квантовой теории внесло свои коррективы в модель Резерфорда, ведь Солнечная система относится к видимому макромиру, а атомы — представители микромира, где действуют другие законы. Как позже выяснил датский ученый Нильс Бор, орбиты, по которым перемещаются электроны, — это энергетические уровни, и отрицательные частицы то и дело перескакивают с одного уровня на другой, вследствие чего атом выделяет или поглощает определенные порции-кванты энергии, соответствующие данным уровням. (Ни Земля, ни Марс, ни любая другая планета не смогли бы перепрыгнуть со своей орбиты на соседнюю.)
Открытие Бора дало ответ на вопрос, почему электроны не падают на ядро — ведь, по законам нашего макроскопического мира, вращающийся объект движется с равномерным ускорением, постоянно заворачивая к центру, и частица, истратив на вращение всю свою энергию, должна была бы скатиться в самую середину. Помимо того, благодаря исследованиям датского ученого стало ясно, почему спектр излучения атома имеет вид не плавно переходящих один в другой цветов, а четко разграниченных линий; и как можно вычислить длину волны каждого цвета. За это в 1922 г. Бор был награжден Нобелевской премией.
Далее развитием его теории занялся немецкий физик Вернер Гейзенберг (1901–1976). Проводя умозрительные эксперименты, ученый пришел к важному заключению: пока на атом ничего не воздействует извне и он пребывает в устойчивом состоянии, его электроны вращаются по внутренней, самой ближней к ядру орбите. Но стоит только воздействовать на атом (нагреть, толкнуть…), как электроны перейдут на внешний уровень, и у системы появится дополнительная энергия. Вращаясь во внешней оболочке, электроны потратят лишнюю энергию и снова перейдут на внутренний уровень, а атом вернется в устойчивое состояние ― это основное, нормальное состояние атомов: если бы они постоянно были возбуждены, во Вселенной не могла бы образоваться материя.
В 1967 г., уже после смерти Резерфорда, американские ученые из национальной лаборатории
Таким образом, Резерфорд задал верное направление развитию теории атома и подарил своим последователям новый метод изучения элементарных частиц. А еще в начале 1930-х он оказал большую поддержку советскому физику Петру Капице (1894–1984), который в течение 13 лет работал вместе с ним в Кавендишской лаборатории Кембриджа. После того как советские власти вынудили Капицу навсегда вернуться в Союз, Резерфорд передал ему все необходимое исследовательское оборудование и принял непосредственное участие в открытии московского Института физических проблем. Можно сказать, развитие физики в Стране Советов стало возможным во многом благодаря великому английскому ученому.
Фотоэлектрический эффект
Окончательно разобраться в том, что представляет собой свет, ученые смогли только тогда, когда обнаружили и исследовали явление фотоэффекта. Предвестником этого открытия стал французский физик Александр Эдмон Беккерель: еще в 1839 г. он нашел, что под действием лучей солнца определенные материалы вырабатывают электричество.