Получив стипендию Рокфеллеровского фонда, в 1926 году Гейзенберг отправился в Копенгаген, где начал работать с Нильсом Бором. Гейзенберг часто ездил в Геттинген к Борну, но большую часть времени проводил в Копенгагене.
Наверное, трудно представить в мире науки более подходящих друг другу сотрудников, чем Бор и Гейзенберг. Опыт, фантастическую интуицию, глубокие знания Бора прекрасно дополняли точность, глубина мысли, блистательный математический кругозор Гейзенберга.
Развитие квантовой теории не стояло на месте.
Спустя несколько месяцев после открытия Гейзенберга Эрвин Шрёдингер развил волновую механику. Ее начало можно было разглядеть в работах Луи де Бройля, который предположил наличие волновых свойств у частиц и выдвинул идею корпускулярно-волновой природы материи. Сегодня физики-теоретики чаще используют представления волновой механики, поскольку ее аппарат легче, чем аппарат матричной механики Гейзенберга.
В сентябре 1926 года Шрёдингер прибыл в Копенгаген, пытаясь переубедить Бора и доказать правоту своей теории, но в результате дискуссии ни одна из сторон не добилась успеха. Ни одну из предложенных интерпретаций квантовой механики нельзя было считать вполне приемлемой.
Макс Борн доказал, что законы физики микромира являются статичными и что волновая функция должна пониматься как комплексная величина, квадрат которой выражает вероятность того, что соответствующая частица находится в той или иной точке пространства. Он сформулировал интерпретацию функции плотности вероятности в квантовомеханическом уравнении Шрёдингера, которая позже была названа «Копенгагенской интерпретацией». Спустя некоторое время Поль Дирак развил теорию квантовой механики, включив в волновое уравнение элементы теории относительности Эйнштейна.
По воспоминаниям Гейзенберга, их совместные исследования и беседы с Бором длились до поздней ночи. Ученые провели опыты по дифракции электронов, которые подтвердили наличие корпускулярно-волнового механизма. После напряженных исследований ученым удалось совершить великие открытия – были получены соотношения неопределенностей Гейзенберга и принцип дополнительности Бора.
В 1927 году Вернер Гейзенберг опубликовал свою знаменитую работу «Über den anschaulichen Inhalt der quanten theoretischen Kinematik und Mechanik», в которой сформулировал «принцип неопределенности». Он стал одним из общих фундаментальных принципов квантовой механики.
Проанализировав процессы измерения координат и импульсов, ученый пришел к выводу, что измерение координаты обязательно влияет на импульс частицы, причем влияние измерения не влияет существенно на импульс. Соотношения Гейзенберга стали пределом точности для идеальных измерений (фон Неймана) и неидеальных измерений (Ландау).
По Гейзенбергу, частица, имеющая дискретный электрический заряд, ни в коем случае не может быть описана одновременно как волна и как точечная частица. Например, чем точнее выявлена позиция электрона в пространстве, тем более неопределенной становится его скорость. Чем точнее определяется частота звукового сигнала, тем сильнее теряется точность определения времени. Согласно «копенгагенской интерпретации», чем точнее исследователь определит координату частицы, тем менее точно будет известен ее импульс и т. д. Принцип неопределенности Гейзенберг применил к каждой паре сопряженных переменных.
Если провести исследования в нескольких идентичных копиях системы в данном состоянии, то полученные значения будут зависеть от определенного «распределения вероятности» – фундаментального понятия квантовой теории.
Большое значение в теории Гейзенберга имеет постоянная Планка, которая входит во многие уравнения, вытекающие из принципа неопределенности Гейзенберга. Например, при измерении величины стандартного отклонения произведение погрешностей измерений двух величин не может быть меньше постоянной Планка. В повседневной жизни мы обычно не наблюдаем неопределенности по той причине, что значение постоянной Планка очень мало, но на атомном уровне принцип неопределенности очень важен.
Свой принцип Гейзенберг вывел как результат умножения матриц. Каждой физической величине соответствовал некий оператор, а операторы Гейзенберг представлял в виде бесконечных матриц.
Из теории Гейзенберга был выведен принцип дополнительности. Гейзенберг вместе с Бором произвели квантовомеханический расчет атома гелия и показали возможность существования его в двух различных состояниях (орто– и пара-). Также Гейзенберг произвел количественное объяснение спектра водорода.
Теория Гейзенберга оказалась трудна для понимания, и не все великие ученые ее приняли.
Например, Бору и Гейзенбергу бросил вызов Альберт Эйнштейн. Он предложил теоретический эксперимент, в котором представил коробку с радиоактивным материалом, испускающим радиацию случайным образом. У коробки имеется специальный затвор, который сразу после заполнения коробки закрывается с помощью часов в определенный момент времени, позволяя уйти небольшому количеству радиации.