Читаем 25 этюдов о шифрах полностью

Поясним более подробно, в каком смысле поле из pn элементов единственно. В математике принято не различать многие объекты, изучаемые свойства которых совпадают. Например, для того, чтобы складывать и умножать, вовсе не обязательно учить отдельно таблицы сложения и умножения для яблок, и отдельно — для стульев. Достаточно уметь складывать числа. Число в данной ситуации можно представлять как количество единиц некоторого обобщенного продукта, неважно какого. В теории полей два поля F и G считаются «одинаковыми» или изоморфными, если можно построить такое взаимно-однозначное отображение s:FG, чтобы для любых x1,x2F выполнялись условия s(x1+

x2)=s(x1)+s(x2), s(x1x2)=s(x1)s
(x2). Фактически это означает, что можно взаимно-однозначно сопоставить всем элементам одного поля элементы другого так, что таблицы умножения и сложения в этих полях будут «одинаковыми». Легко, например, доказать, что при изоморфизме нуль переходит в нуль, единица — в единицу.

Яркий пример использования полей в криптографии вы найдете в этюде 3.5, описывающем криптосистему RSA. Для ее полного понимания рекомендуем решить (или прочитать в любой книге по теории чисел, например, в книге И.М. Виноградова «Основы теории чисел» или в книге О. Оре «Приглашение в теорию чисел») приведенные ниже задачи.

Подумайте сами:

1. Функцией Эйлера (обозначение φ(n)) называется количество неотрицательных целых чисел, меньших n и взаимно простых с n. Пусть n = p1α1∙...∙pkαk, где p

1, ..., pk — различные простые числа, а α1, ..., αk — натуральные. Доказать, что

2. (Малая теорема Ферма). Пусть p — простое число, a — число взаимно простое с p. Докажите, что тогда

3. (Теорема Эйлера). Пусть a и n — взаимно простые числа. Докажите, что тогда

3.4. Проблемы факторизации чисел и дискретного логарифмирования

Еще в младших классах школы все решают задачи по разложению чисел на простые множители. Делается это просто делением данного числа на последовательные простые числа. Если число большое, то этот алгоритм будет работать долго (даже на компьютере). Если же число очень большое (скажем, состоит из 200 знаков), самому современному компьютеру могут понадобиться годы работы. И, как это ни странно, до сих пор математики не придумали никакого другого алгоритма, работающего существенно быстрее. Проблема построения такого алгоритма называется проблемой факторизации чисел. С другой стороны, существуют быстрые алгоритмы, позволяющие с большой вероятностью определять, является ли данное число простым или нет (но никакого разложения числа на простые множители эти алгоритмы не находят).

Криптографические приложения проблемы факторизации чисел и, особенно, заинтересованность пользователей банковских систем цифровой подписи привели к резкому увеличению исследований, связанных с разложением чисел на множители. В последние годы благодаря применению тонких методов теории чисел и алгебраической геометрии было разработано несколько эффективных алгоритмов факторизации. Наилучший из таких алгоритмов еще не является полиномиальным, но уже и не экспоненциальный, он относится к классу так называемых субэкспоненциальных алгоритмов (говоря строго, его сложность превосходит любой полином от n, но меньше, чем 2N

, где N=nε для любого ε>0).

Среди последних достижений в этой области можно упомянуть об успехе Ленстры и Монасси, разложивших в июне 1990 года 155-разрядное число на три простых. Для этого они использовали 1000 объединенных ЭВМ и шесть недель их машинного времени. Вычисления проводились с помощью алгоритма английского математика Дж. Полларда. Ленстра и Монасси считают, что в настоящее время (1991 г.) можно в течение года разложить новые классы целых чисел длиной до 155 разрядов, затратив на это $200 млн.

Еще одна большая проблема — дискретное логарифмирование в конечных полях. Пусть, например, нам даны элементы a и b из конечного поля F, причем известно, что a=bx при некотором натуральном x. Задача дискретного логарифмирования состоит в том, чтобы определить это x. Можно, разумеется, просто перебирать последовательно все натуральные числа, проверяя, выполнено ли указанное равенство, но это будет экспоненциальный алгоритм. Пока наилучший из разработанных математиками алгоритмов дискретного логарифмирования является субэкспоненциальным.

В настоящее время эти описанные трудные математические проблемы имеют многочисленные криптографические приложения (см. этюды 3.5, 3.6, 3.7).

3.5. Криптосистема RSA

В этюде 3.2 описано, как Диффи и Хеллмэн с помощью односторонней функции с секретом построили криптосистему с открытым ключом. Правда, они не предложили функций, удобных для реализации.

Перейти на страницу:

Похожие книги

"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература
Для юных математиков
Для юных математиков

Вниманию юного, и не очень, читателя предлагается книжная серия, составленная из некогда широко известных произведений талантливого отечественного популяризатора науки Якова Исидоровича Перельмана.Начинающая серию книга, которую Вы сейчас держите в руках, написана автором в 20-х годах прошлого столетия. Сразу ставшая чрезвычайно популярной, она с тех пор практически не издавалась и ныне является очень редкой. Книга посвящена вопросам математики. Здесь собраны разнообразные математические головоломки, из которых многие облечены в форму маленьких рассказов. Книга эта, как сказал Я. И. Перельман, «предназначается не для тех, кто знает все общеизвестное, а для тех, кому это еще должно стать известным».Все книги серии написаны в форме непринужденной беседы, включающей в себя оригинальные расчеты, удачные сопоставления с целью побудить к научному творчеству, иллюстрируемые пестрым рядом головоломок, замысловатых вопросов, занимательных историй, забавных задач, парадоксов и неожиданных параллелей.Авторская стилистика письма сохранена без изменений; приведенные в книге статистические данные соответствуют 20-м годам двадцатого века.

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Математика / Книги Для Детей / Дом и досуг