Читаем 4a. Кинетика. Теплота. Звук полностью

Посмотрим, можно ли понять, почему так происходит. Рас­смотрим две волны с несколько различными длинами, как это показано на фиг. 48.1. Они то совпадают по фазе, то разли­чаются, то снова совпадают и т. д. Однако теперь эти волны в действительности представляют волны в пространстве, рас­пространяющиеся с немного различными скоростями. Но по­скольку фазовая скорость, скорость узлов этих двух волн, не в точности одинакова, то происходит нечто новое. Предпо­ложим, что мы едем рядом с одной из волн и смотрим на другую. Если бы они двигались с одинаковой скоростью, то вторая волна оставалась бы относительно нас там же, где и была с самого начала, поскольку мы едем как бы на гребне одной волны и видим гребень второй прямо около себя. Однако в действитель­ности скорости не равны. Частоты немного отличаются друг от друга, а поэтому немного отличаются и скорости. Из-за этой небольшой разницы в скоростях другая волна либо медленно обгоняет нас, либо отстает. Что же с течением времени проис­ходит с узлом? Если чуть-чуть продвинуть одну из волн, то узел при этом уйдет на значительное расстояние вперед (или назад), т. е. сумма этих двух волн имеет какую-то огибающую, кото­рая вместе с распространением волн скользит по ним с другой скоростью. Групповая скорость является той скоростью, с ко­торой передаются модулирующие сигналы.

Если мы посылаем сигнал, т. е. производим какие-то изме­нения волны, которые могут быть услышаны и расшифрованы кем-то, то это является своего рода модуляцией, но такая мо­дуляция при условии, что она относительно медленная, будет распространяться с групповой скоростью (быстрые модуляции значительно труднее анализировать).

Теперь мы можем показать (наконец-то!), что скорость рас­пространения рентгеновских лучей в куске угля, например, не больше, чем скорость света, хотя фазовая скорость больше скорости света. Чтобы сделать это, нужно найти соотношение dw/dk, которое мы вычислим дифференцированием формулы

(48.14): dk/dw=1/c+a/(w2c). А групповая скорость равна обрат­ной величине, т. е.


что меньше, чем с! Таким образом, хотя фазы могут бежать бы­стрее скорости света, модулирующие сигналы движутся мед­леннее, и в этом состоит разрешение кажущегося парадокса!

Разумеется, в простейшем случае w=kc групповая скорость dw/dk тоже равна с, т. е. когда все фазы движутся с одинако­вой скоростью, естественно, и групповая скорость будет той же самой.

§ 5. Амплитуда вероятности частиц


Рассмотрим еще один необычайно интересный пример фа­зовой скорости. Он относится к области квантовой механики. Известно, что амплитуда вероятности найти частицу в данном месте изменяется при некоторых обстоятельствах в пространстве и времени (давайте возьмем одно измерение) следующим обра­зом:


где w — частота, связанная с классической энергией, E=hw, a k — волновое число, которое связано с импульсом соотно­шением р=hk. Мы говорим, что частица имеет определенный импульс р, если волновое число в точности равно k, т. е. если бежит идеальная волна повсюду с одинаковой амплитудой. Выражение (48.19) дает амплитуду вероятности, но если мы возьмем квадрат абсолютной величины, то получим относитель­ную вероятность обнаружения частицы как функцию поло­жения и времени. В данном случае она равна постоянной, что означает вероятность обнаружить частицу в любом месте, Рассмотрим теперь такой случай, когда известно, что обна­ружить частицу в каком-то месте более вероятно, чем в других местах. Подобную картину мы описываем волной, которая имеет максимум в данном месте и сходит на нет по мере удале­ния в стороны (фиг. 48.6).

Фиг. 48.6. Локализованный волновой пакет,

(Это не то же самое, что изображено на фиг. 48.1, где волна имеет целый ряд максимумов, но сними вполне можно расправиться, сложив несколько волн с при­близительно одинаковыми значениями w и k. Таким способом можно избавиться от всех максимумов, кроме одного.)

При этих обстоятельствах, поскольку квадрат выражения (48.19) представляет вероятность найти частицу в некотором месте, мы знаем, что в данный момент больше шансов найти ча­стицу вблизи центра «колокола», где амплитуда максимальна.

Если подождать немного, то волна передвинется, и по проше­ствии некоторого промежутка времени «колокол» перейдет в какое-то другое место. Зная, что частица вначале где-то была расположена, мы ожидали бы, согласно классической меха­нике, что она будет где-то и позднее, ведь есть же у нее ско­рость и импульс в конце концов. При этом квантовая теория дает в пределе правильные классические соотношения между энергией, импульсом и скоростью, если только групповая ско­рость, скорость модуляции, будет равна скорости классиче­ской частицы с тем же самым импульсом.


Сейчас необходимо показать, так ли это на самом деле или нет. Согласно классической теории, энергия связана со ско­ростью уравнением


Точно таким же образом импульс равен


Как следствие отсюда после исключения v получается

E22c2=m2c4,


Перейти на страницу:

Похожие книги

Вечность. В поисках окончательной теории времени
Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни.Книга «Вечность. В поисках окончательной теории времени» не просто следующий шаг на пути к пониманию почему существует Вселенная — это прекрасное чтения для широкого круга читателей, которые интересуются физикой и устройством нашего мира.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Образование и наука