Читаем 500 схем для радиолюбителей. Дистанционное управление моделями полностью

♦ увеличивая эквивалентную добротность контура описанным способом в соответствии с формулой (5.3), можно получать на контуре колебания любой желаемой амплитуды.

Физический смысл отрицательного сопротивления, уменьшающего общее сопротивление потерь, заключается в том, что в контур за счет положительной обратной связи, вносится из коллекторной цепи энергия источника питания, компенсирующая потери энергии сигнала в контуре. Энергия вносится в виде колебаний той же частоты, что и у поступивших в контур из антенны.

Происходящая компенсация потерь или, другими словами, восстановление энергии сигнала называется регенерацией, а приемники, использующие рассмотренный принцип для повышения коэффициента усиления, — регенеративными.


Принципы сверхрегенерации

При всей привлекательности рассмотренного метода, он обладает существенным недостатком. Параметры, определяющие величину отрицательного вносимого сопротивления rвн = MS/C1 не стабильны во времени, из-за чего нестабильным получается и сам режим регенерации. Увеличение положительной обратной связи (увеличение rвн) до обращения в нуль знаменателя формулы (5.6) приводит к превращению усилителя в генератор, уменьшение — к существенному снижению расчетного коэффициента усиления, а значит и к потере чувствительности.

Кроме того, увеличение коэффициента усиления приемника за счет увеличения эквивалентной добротности ограничивается требованиями к полосе пропускания приемника (Δfпр). Последняя, как известно, определяется выражением Δ

fпр = f0/QЭ и не должна быть меньше активной ширины спектра принимаемого сигнала. Классическим примером обращения недостатка в достоинство является идея сверхрегенеративного усиления. Нетрудно согласиться с утверждением, что наибольший коэффициент усиления в регенераторе можно получить, находясь на границе самовозбуждения, когда знаменатель формулы (5.6) близок к нулю.

Однако это положение и наименее устойчиво именно из-за близости к режиму самовозбуждения. Идея сверхрегенеративного приема заключается в периодическом изменении вносимого отрицательного сопротивления таким образом, чтобы усилитель на определенную часть этого периода превращался в генератор, проходя через область максимального усиления. Рассмотрим эту идею подробнее.

Как было отмечено выше, величиной вносимого сопротивления можно варьировать, изменяя либо взаимоиндуктивность М, либо крутизну транзистора S. При рассмотрении принципов сверхрегенерации удобнее использовать S. Для начала выясним смысл этого параметра.

На рис. 5.4, а изображена входная характеристика транзистора, представляющая собой зависимость тока базы (iб) от напряжения между базой и эмиттером (uб). К базе обычно подключено напряжение смещения (u0

), задающее положение рабочей точки (РТ1) на входной характеристике. При подаче на базу еще и переменного напряжения амплитудой Uб, ток базы будет меняться по тому же закону с амплитудой Iб (рис. 5.4, б).



Рис. 5.4. Зависимость крутизны от положения рабочей точки


При постоянной амплитуде напряжения, приложенного к базе, амплитуда тока, как это хорошо видно из рис. 5.4, будет зависеть от угла наклона входной характеристики в окрестностях рабочей точки. Количественно этот угол характеризуется крутизной входной характеристики Sб. Изменяя положение рабочей точки с помощью u0, можно менять Sб. Амплитуда коллекторного тока (/

к) может быть определена по формуле Iк = Iбh21э, где h21э — коэффициент усиления транзистора по току в схеме с общим эмиттером. Величину S = Iк/Uб и будем называть крутизной транзистора.

Обратите внимание на то, что крутизна транзистора, как и величина Sб, зависит от положения рабочей точки транзистора на входной характеристике. Конкретная форма зависимости крутизны от напряжения смещения для разных транзисторов различна. Существенным же является тот факт, что крутизна тем больше, чем больше постоянное напряжение смещения U

0, что хорошо видно из рисунка. При дальнейших рассуждениях для простоты будем полагать, что зависимость крутизны от напряжения смещения прямо пропорциональная (рис. 5.5, а).



Рис. 5.5.Прерывистая генерация в сверхрегенераторе


Теперь можно приступать к рассмотрению собственно режима сверхрегенерации. Обозначим значение крутизны транзистора, при которой знаменатель выражения (5.6) обращается в нуль (возникает генерация) через Sкр. Для получения этого значения на базу транзистора необходимо подать напряжение Uкр (рис. 5.5, а). В исходном состоянии на базу подают постоянное напряжение смещения U0, обеспечивающее такое положение рабочей точки транзистора (РТ), при котором крутизна S0 меньше критической. Генерация в этом случае отсутствует.

Перейти на страницу:

Все книги серии Радиолюбитель

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки