Читаем А ну-ка, догадайся! полностью

Половина машин должна была отойти старшему сыну, четверть — среднему и одна шестая — младшему.



Сыновья были не на шутку озадачены. Ну как можно разделить пополам 11 машин или, скажем, отделить от них четверть или одну шестую?



В разгар споров по поводу наследства мимо проезжала в своей новой спортивной машине знаменитый нумеролог миссис Зеро.

М-с Зеро.

Хэлло, мальчики!

Что-то вид у вас не очень веселый. Может быть, я могу вам чем-нибудь помочь?



После того как братья объяснили миссис Зеро суть своих затруднений, она поставила свою машину рядом с 11 коллекционными машинами и выпорхнула из нее.

М-с Зеро. Сколько теперь машин перед вами?

Братья сосчитали — получилось 12 машин.



Затем миссис Зеро разделила 12 машин в соответствии с завещанием. Половину, или 6 машин, она отдала старшему сыну, четвертую часть, или 3 машины, — среднему сыну, и шестую часть, или 2 машины, — младшему сыну.

М-с 3еро. 6 плюс 3 плюс 2 — 11 машин. Одна машина лишняя, это моя машина.



Изящно впорхнув в свою машину, миссис Зеро дала газ и умчалась.

М-с Зеро. Всегда к вашим услугам, мальчики! Счет за консультацию я пришлю вам попозже.


Этот парадокс представляет собой современный вариант старинной арабской головоломки, в котором вместо лошадей речь идет о машинах. Вы можете по своему усмотрению изменять завещание старого чудака, варьируя число машин в оставшейся после него коллекции и доли наследства, причитающиеся его, сыновьям, следя лишь за тем, чтобы соблюдалось единственное условие: пополнив коллекцию еще одной машиной, сыновья получали возможность разделить наследство в соответствии с завещанием и вернуть «лишнюю» машину тому, кто любезно одолжил им ее.

Например, коллекция, оставшаяся после смерти адвоката, могла бы насчитывать 17 машин, а в завещании могло бы говориться о том, что сыновья должны получить соответственно 1/2, 1/3 и 1/9 всех машин.

Если n — число машин в коллекции, 1/а, 1/b и 1/c — доли, причитающиеся сыновьям по наследству, то парадокс возникает только в том случае, если уравнение

допускает решение в положительных целых числах.

Удастся ли вам обобщить задачу на случай большего числа наследников и машин, занимаемых для того, чтобы стал возможным раздел наследства в соответствии с завещанием?

Решение парадокса состоит в том, что сумма долей, указанных в завещании, меньше 1. Если бы сыновья во исполнение завещания вздумали бы резать машины, то после раздела наследства 11/12 машины остались бы «невостребованными». Миссис Зеро, по существу, показала братьям, как распределить между ними эти дополнительные 11/12 машины. В результате старший сын получает на 6/12, средний — на 3/12 и младший — на 2/12 машины больше, чем получили бы первоначально. В сумме эти три дроби (6/12 + 3/12 + 2/12) составляют 11/12, а поскольку каждый сын получает целое число машин, необходимость в разрезании машин отпадает.


Необыкновенный код



Доктор Зета, ученый из галактики Геликс, лежащей в другом измерении пространства — времени, прибыл на Землю для сбора научной информации об ее обитателях.

В США он был гостем доктора Германа.



Д-р Герман. Почему бы вам не прихватить с собой Британскую энциклопедию? В ней в сжатом виде изложен колоссальный опыт всего человечества.

Д-р Зета. Великолепная идея! Жаль только, что я не смогу взять с собой столь большую массу.



Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг