Читаем А ну-ка, догадайся! полностью

Перед своим отлетом доктор Зета поведал поистине фантастическую историю.

Д-р Зета. В самом центре нашей галактики находится огромная гостиница «Бесконечность». В ней действительно бесконечно много однокомнатных номеров, уходящих через черную дыру в другое измерение. В гостинице есть первый номер, есть второй (комнаты перенумерованы по порядку), но нет последнего.



Д-р Зета. Однажды в гостиницу по пути в другую галактику заглянул командир неизвестного летающего объекта (НЛО).



Д-р Зета. Хотя ни одного свободного места не было, управляющий гостиницей все же нашел способ устроить пилота: он попросил каждого обитателя гостиницы переселиться в комнату с номером на единицу больше, чем у той, в которой тот проживал прежде, и поселил командира НЛО в освободившийся первый номер.



Д-р 3ета.

На следующий день в гостиницу прибыли 5 супружеских пар, совершавших свадебное путешествие. Управляющий и тут не растерялся и, переселив каждого обитателя гостиницы в комнату с номером на 5 больше, чем у той, в которой тот проживал прежде, отвел супружеским парам освободившиеся комнаты с номерами от 1 до 5.



Д-р 3ета. В конце недели в гостиницу нагрянули участники съезда продавцов жевательной резинки. Их было бесконечно много.

Д-р Герман. Я в силах понять, как управляющий гостиницы «Бесконечность» мог бы разместить любое конечное число вновь прибывших, но как разместить бесконечное множество гостей?



Д-р 3ета. Управляющий легко справился и с этой задачей: каждого обитателя гостиницы он переселил в комнату с номером вдвое больше, чем у той, которую тот занимал прежде.



Д-р Герман. Понял! Все прежние постояльцы гостиницы оказались после переселения в комнатах с четными номерами, а бесконечное множество освободившихся комнат с нечетными номерами управляющий предоставил продавцам жевательной резинки.


Ни одно конечное множество невозможно поставить во взаимно-однозначное соответствие с любым из его собственных подмножеств. В случае бесконечных множеств такое утверждение неверно. Бесконечные множества нарушают старое правило «часть меньше целого». Бесконечное множество можно определить как множество, которое можно поставить во взаимно-однозначное соответствие с собственным подмножеством.

Управляющий гостиницей «Бесконечность» сначала показал, что множество всех натуральных чисел можно поставить во взаимно-однозначное соответствие с одним из его собственных подмножеств, вычеркивая из исходного множества один или пять элементов. Тот же прием позволяет устанавливать взаимно-однозначное соответствие между бесконечным множеством и его собственным подмножеством, получаемым при вычеркивании любого конечного числа элементов.

Вычеркиванию элементов можно придать несколько более драматический характер. Представим себе, что на столе перед нами лежат шкала к шкале две бесконечные линейки с равномерными сантиметровыми делениями. Нулевые отметки на обеих шкалах совмещены и находятся в центре стола. Деления с отметками простираются неограниченно далеко вправо, причем между отметками существует взаимно-однозначное соответствие: 0–0, 1–1, 2–2 и т. д. Сдвинем теперь одну из линеек на n см вправо.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг