Читаем Алгоритм изобретения полностью


Общий итог: комплексный холодильный аппарат на жидком кислороде, некруговая схема питания кислородом, начальная перегрузка для увеличения мощности.

Были разработаны (мною совместно с инженером Р. Шапиро) два варианта комплексного холодильно-дыхательного аппарата. Оба проекта получили на конкурсе высшие премии — первую и вторую. Основной принцип — объединение холодильного и дыхательного аппаратов — лег в основу современных газотеплозащитных костюмов, впервые в мире созданных в Советском Союзе.

«Аппарат для индивидуальной газотепловой защиты, — сказано в авторском свидетельстве № 111144, — состоящий из герметизированного комбинезона, шлема, соединительного кольца, дыхательного мешка, маски и размещенного в подкостюмном пространстве резервуара жидкого кислорода, отличающийся тем, что для устранения необходимости в специальных респираторах отработанный в холодильной системе газ используется для дыхания».

На рис. 6 видно, как устроен газотеплозащитный костюм. Жидкий кислород размещен в ранцевом резервуаре 1. Испаряясь, кислород поступает в инжектор 2, расположенный по оси сквозного канала 3. Вытекая из инжектора, кислород смешивается с теплым воздухом подкостюмного пространства и охлаждает его.

В резервуар может быть залито 15—16 кг жидкого кислорода; это обеспечивает 2000—2200 ккал теплоотвода. Начальный вес скафандра при этом составляет 20—22 кг. Если же повысить начальный вес до 30—35 кг, запас кислорода можно увеличить в полтора раза. В таком скафандре не страшно войти и в раскаленную печь...


Рис. 6. Газотеплозащитный костюм для горноспасателей, впервые созданный в Советском Союзе.

* * *

Познакомимся теперь с новым вариантом алгоритма.

АРИ3—71

Часть 1. Выбор задачи

1—1. Первый шаг. Определить конечную цель решения задачи.

а) Какова техническая цель решения задачи («Какую характеристику объекта надо изменить?»).

б) Какие характеристики объекта заведомо нельзя менять при решении задачи?

в) Какова экономическая цель решения задачи («Какие расходы снизятся, если задача будет решена?»).

г) Каковы (примерно) допустимые затраты?

д) Какой главный технико-экономический показатель надо улучшить?

1—2. Второй шаг.

Проверить обходной путь. Допустим, задача принципиально нерешима; какую другую — более общую — задачу надо решить, чтобы получить требуемый конечный результат?

1—3. Третий шаг. Определить, решение какой задачи целесообразнее — первоначальной или обходной.

а) Сравнить первоначальную задачу с тенденциями развития данной отрасли техники.

б) Сравнить первоначальную задачу с тенденциями развития ведущей отрасли техники.

в) Сравнить обходную задачу с тенденциями развития данной отрасли техники.

г) Сравнить обходную задачу с тенденциями развития ведущей отрасли техники.

д) Сопоставить первоначальную задачу с обходной. Произвести выбор.

1—4. Четвертый шаг. Определить требуемые количественные показатели.

1—5. Пятый шаг. Внести в требуемые количественные показатели «поправку на время».

1—6. Шестой шаг. Уточнить требования, вызванные конкретными условиями, в которых предполагается реализация изобретения.

а) Учесть особенности внедрения. В частности, допускаемую степень сложности решения.

б) Учесть предполагаемые масштабы применения.


Часть 2. Уточнение условий задачи

2—1. Первый шаг. Уточнить задачу, используя патентную литературу.

а) Как (по патентным данным) решаются задачи, близкие к данной?

б) Как решаются задачи, похожие на данную, в ведущей отрасли техники?

в) Как решаются задачи, обратные данной?

2—2. Второй шаг. Применить оператор РВС.

а) Мысленно меняем размеры объекта от заданной величины до нуля (Р→0). Как теперь решается задача?

б) Мысленно меняем размеры объекта от заданной величины до бесконечности (Р→∞). Как теперь решается задача?

в) Мысленно меняем время процесса (или скорость движения объекта) от заданной величины до нуля (В→0). Как теперь решается задача?

г) Мысленно меняем время процесса (или скорость движения объекта) от заданной величины до бесконечности (В→∞). Как теперь решается задача?

д) Мысленно меняем стоимость (допустимые затраты) объекта или процесса от заданной величины до нуля (С→0). Как теперь решается задача?

е) Мысленно меняем стоимость (допустимые затраты) объекта или процесса от заданной величины до бесконечности (С→∞). Как теперь решается задача?

2—3. Третий шаг. Изложить условия задачи (не используя специальные термины и не указывая, что именно нужно придумать, найти, создать) в двух фразах по следующей форме:

а) Дана система из (указать элементы).

б) Элемент (указать) при условии (указать) дает нежелательный эффект (указать).

Пример. Дан трубопровод с задвижкой; по трубопроводу движется вода с частицами железной руды. Частицы руды при движении истирают задвижку.

2—4. Четвертый шаг. Переписать элементы из 2—За в виде следующей таблицы:


Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки