Читаем Алгоритм изобретения полностью

а) Элементы, которые можно менять, переделывать, переналаживать (в условиях данной задачи).
б) Элементы, которые трудно видоизменять (в условиях данной задачи).


Пример. Трубопровод и задвижка — «а»; вода и частицы руды — «б».

2—5. Пятый шаг. Выбрать из 2—4а такой элемент, который в наибольшей степени поддается изменениям, переделке, переналадке.

Примечания: а) Если все элементы в 2—4а равноценны по степени допускаемых изменений, начните выбор с неподвижного элемента (обычно его легче менять, чем подвижный). б) Если в 2—4а есть элемент, непосредственно связанный с нежелательным эффектом (обычно этот элемент указывают в 2—3б), выберите его в последнюю очередь, в) Если в системе есть только элементы 2—4б, возьмите в качестве элемента внешнюю среду.

Пример. Выбрать надо трубопровод, так как задвижка связана с нежелательным явлением (истирается).


Часть 3. Аналитическая стадия

3—1. Первый шаг. Составить формулировку ИКР (идеального конечного результата) по следующей форме:

а) Объект (взять элемент, выбранный в 2—5).

б) Что делает.

в) Как делает (на этот вопрос всегда следует ответить словами «сам», «сама», «само»).

г) Когда делает.

д) При каких обязательных условиях (ограничениях, требованиях и т. п.).

Пример. Трубопровод... меняет свое сечение... сам... когда надо регулировать поток... не истираясь.

3—2. Второй шаг. Сделать два рисунка: «Было» (до ИКР) и «Стало» (ИКР).

Примечания:

а) Рисунки могут быть условные — лишь бы они отражали суть «Было» и «Стало», б) Рисунок «Стало» должен совпадать со словесной формулировкой ИКР.

Проверка. На рисунках должны быть все элементы, перечисленные в 2—За. Если при шаге 2—5 выбрана внешняя среда, ее надо указать на рисунке «Стало».

3—3. Третий шаг. На рисунке «Стало» найти элемент, указанный в 3—1а, и выделить ту его часть, которая не может совершить требуемого действия при требуемых условиях. Отметить эту часть (штриховкой, другим цветом, обводкой контуров и т. п.).

Пример. В рассматриваемой задаче такой частью будет внутренняя поверхность трубопровода.

3—4. Четвертый шаг. Почему эта часть сама не может осуществить требуемое действие?


Вспомогательные вопросы

а) Чего мы хотим от выделенной части объекта?

б) Что мешает выделенной части самой осуществить требуемое действие?

в) В чем несоответствие между «а» и «б»?

Пример:

а) Внутренняя поверхность трубы должна сама менять сечение потока, б) Она неподвижна, не может оторваться от стенок трубы, в) Она должна быть неподвижной (как элемент жесткой трубы) и подвижной (как сжимающийся и разжимающийся элемент регулятора).

3—5. Пятый шаг. При каких условиях эта часть сможет осуществить требуемое действие (какими свойствами она должна обладать)?

Примечание. Не надо пока думать — осуществимо ли практически желательное свойство. Назовите это свойство, не беспокоясь о том, как оно будет достигнуто.

Пример. На внутренней поверхности трубы появляется какой-то слой вещества, тем самым внутренняя поверхность переносится ближе к оси трубы. При необходимости этот слой исчезает, и внутренняя поверхность отдаляется от оси трубы.

3—6. Шестой шаг. Что надо сделать, чтобы выделенная часть объекта приобрела свойства, отмеченные в 3—5?


Вспомогательные вопросы

а) Покажите на рисунке стрелками силы, которые должны быть приложены к выделенной части объекта, чтобы обеспечить желательные свойства.

б) Какими способами можно создать эти силы? (Вычеркнуть способы, нарушающие условия 3—1д.)

Пример. Наращивать на внутреннюю поверхность трубы частицы железной руды или воду (лед). Других веществ внутри трубопровода нет, этим и определяется выбор.

3—7. Седьмой шаг.

Сформулировать способ, который может быть практически осуществлен. Если таких способов несколько, обозначьте их цифрами (самый перспективный — цифрой 1 и т. д.). Запишите выбранные способы.

Пример. Выполнить участок трубы из немагнитного материала и с помощью электромагнитного поля «наращивать» на внутреннюю поверхность частицы руды.

3—8. Восьмой шаг. Дать схему устройства для осуществления первого способа.

Вспомогательные вопросы

а) Каково агрегатное состояние рабочей части устройства?

б) Как меняется устройство в течение одного рабочего цикла?

в) Как меняется устройство после многих циклов?

(После решения задачи следует вернуться к шагу 3—1 и рассмотреть другие перечисленные в нем способы.)


Часть 4. Предварительная оценка найденной идеи

4—1. Первый шаг. Что улучшается и что ухудшается при использовании предлагаемого устройства или способа? Запишите, что достигается предложением и что при этом усложняется, удорожается и т. д.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки