Читаем Апология математики, или О математике как части духовной культуры полностью

Уже в школьной геометрии мы встречаемся с двумя видами одинаковости — с конгруэнтностью фигур и с их подобием. Напомним, что фигуры называются конгруэнтными, если они совпадают друг с другом при наложении. В школе конгруэнтные фигуры как бы не различают, и потому конгруэнтность называют равенством. Конгруэнтные фигуры имеют одинаковые размеры во всех своих деталях. Подобие же, не требуя одинаковости размеров, означает одинаковость пропорций этих размеров; поэтому подобие отражает более сущностное сходство фигур, нежели конгруэнтность. Геометрия в целом — более высокая ступень абстракции, нежели физика, а физика — чем материаловедение. Возьмём, к примеру, шарик подшипника, бильярдный шар, крокетный шар и мяч. Физика не вникает в такие детали, как материал, из которого они сделаны, а интересуется лишь такими свойствами, как объём, вес, электропроводность и т. п. Для математики — все они шары, различающиеся только размерами. Если шары имеют разные размеры, то они различаются для

метрической геометрии, но все они одинаковы для геометрии подобия
. С точки зрения геометрии подобия одинаковы и все шары, и все кубы, а вот шар и куб — не одинаковы.

А теперь посмотрим на тор. Тор — эта та геометрическая фигура, форму которой имеют баранка и спасательный круг. Энциклопедия определяет тор как фигуру, полученную вращением круга вокруг оси, расположенной вне этого круга. Призываем благосклонного читателя осознать, что шар и куб «более одинаковы» между собой, чем каждый из них с тором. Наполнить это интуитивное осознание точным смыслом позволяет следующий мысленный эксперимент. Представим себе шар сделанным из материала столь податливого, что его можно изгибать, растягивать, сжимать и, вообще, деформировать как угодно, — нельзя только ни разрывать, ни склеивать. Очевидно, что шар тогда можно превратить в куб, но вот в тор превратить невозможно. Толковый словарь Ушакова определяет крендель как выпечку (буквально: как сдобную витую булку) в форме буквы В. При всём уважении к этому замечательному словарю, слова «в форме цифры 8» кажутся мне более точными; впрочем, с той точки зрения, которая выражена в понятии гомеоморфии, и выпечка в форме цифры

8, и выпечка в форме буквы В, и выпечка в форме фиты имеют одну и ту же форму. Даже если предположить, что хлебопёки сумели получить тесто, обладающее вышеуказанными свойствами податливости, колобок невозможно — без разрывов и склеиваний! — превратить ни в баранку, ни в крендель, как и последние две выпечки друг в друга. А вот превратить шарообразный колобок в куб или в пирамиду — можно. Любезный читатель несомненно сумеет найти и такую возможную форму выпечки, в которую нельзя превратить ни колобок, ни крендель, ни баранку.

Не назвав этого понятия, мы уже познакомились с гомеоморфией. Две фигуры называются гомеоморфными,

если одну можно превратить в другую путём непрерывной (т. е. без разрывов и склеиваний) деформации; сами такие деформации называются гомеоморфизмами. Мы только что выяснили, что шар гомеоморфен кубу и пирамиде, но не гомеоморфен ни тору, ни кренделю, а последние два тела не гомеоморфны между собой. Просим читателя понимать, что мы привели лишь приблизительное описание понятия гомеоморфии, данное в терминах механического преобразования.

Коснёмся философского аспекта понятия гомеоморфии. Представим себе мыслящее существо, живущее внутри какой-либо геометрической фигуры и не обладающее возможностью посмотреть на эту фигуру извне, «со стороны». Для него фигура, в которой оно живёт, образует Вселенную. Представим себе также, что когда объемлющая фигура подвергается непрерывной деформации, существо деформируется вместе с нею. Если фигура, о которой идёт речь, является шаром, то существо никаким способом не может различить, пребывает ли оно в шаре, в кубе или в пирамиде. Однако для него не исключена возможность убедиться, что его Вселенная не имеет формы тора или кренделя. Вообще, существо может установить форму окружающего его пространства лишь с точностью до гомеоморфии, то есть оно не в состоянии отличить одну форму от другой, коль скоро эти формы гомеоморфны.

Для математики значение гипотезы Пуанкаре, превратившейся теперь из гипотезы в теорему Пуанкаре — Перельмана, огромно (не зря ведь за решение проблемы был предложен миллион долларов), равно как огромно и значение найденного Перельманом способа её доказательства, но объяснить это значение здесь — вне нашего умения. Что же касается космологической стороны дела, то, возможно, значимость этого аспекта была несколько преувеличена журналистами. Впрочем, некоторые авторитетные специалисты заявляют, что осуществлённый Перельманом научный прорыв может помочь в исследовании процессов формирования чёрных дыр.

Перейти на страницу:

Все книги серии Новая Эврика

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука