Читаем Аппаратные интерфейсы ПК полностью

Микросхемы SDRAM имеют средства энергосбережения, для управления ими используется вход разрешения синхронизации CKE.

В режиме саморегенерации (Self Refresh) микросхемы периодически выполняют циклы регенерации по внутреннему таймеру и не реагируют на внешние сигналы, поэтому внешняя синхронизация может быть остановлена.

Режимы пониженного потребления (Power Down Mode) устанавливаются при переводе CKE в низкий уровень командой NOP или INHBT. В этих режимах микросхема не воспринимает команд. Поскольку в данных режимах регенерация не выполняется, длительность пребывания в них ограничена периодом регенерации.

Если во время выполнения команды чтения или записи установить CKE=L, то микросхема перейдет в режим Clock Suspend Mode, в котором «замораживается» внутренняя синхронизация (нет продвижения данных) и не воспринимаются новые команды.

Для памяти SDRAM ключевыми параметрами являются:

♦ допустимая тактовая частота;

♦ CL (Cas Latency) — число скрытых тактов (2 или 3);

♦ TRCD — задержка RAS-CAS, выраженная в тактах (2 или 3);

♦ TRP — время предварительного заряда RAS;

♦ TRC — минимальное время цикла обращений к строкам одного банка;

♦ TAC — время задержки появления данных на выходе относительно фронта синхросигнала.

По тактовой частоте для SDRAM, применяемой в качестве ОЗУ PC-совместимых компьютеров, имеется три градации: PC66 (поначалу ее так не называли, поскольку другой и не было), PC100 и PC133 для максимальных частот 66,6, 100 и 133 МГц соответственно. Их ключевые параметры приведены в табл. 7.4. В обозначении быстродействия микросхем SDRAM обычно фигурирует TAC; период частоты синхронизации, естественно, не может быть меньше этой задержки. Микросхемы со спецификацией -10 могут устойчиво работать в модулях лишь на частоте 66 МГц. Микросхемы -8 могут работать на частоте 100 МГц, но, в зависимости от модификации, с разной латентностью. Так, например, для памяти Micron микросхемы с маркировкой -8А…-8С могут работать на частоте 100 МГц с CL = 3, a -8D или -8Е — с CL = 2.


Таблица 7.4. Ключевые параметры временной диаграммы SDRAM

СпецификацияCLTRCDTRPTRCПримечание
PC663238Медленный вариант
2227Самый быстрый вариант
PC1003338Медленный вариант
3227Средний вариант
2227Самый быстрый вариант
PC1333339Медленный вариант
3228Средний вариант
2328Средний вариант
2228Самый быстрый вариант

Естественно, память может работать и на частотах ниже максимальной. Для микросхем SDRAM, применяемых, например, в графических адаптерах, существуют и иные спецификации быстродействия.

Синхронный интерфейс позволяет довольно эффективно использовать шину и обеспечить на частоте 100 МГц пиковую производительность 100 Мбит/с на 1 вывод шины данных. SDRAM используют в составе модулей DIMM с 8-байтной разрядностью, что дает производительность 800 Мбайт/с. При частоте шины 133 МГц пиковая производительность уже достигла 1064 Мбайт/с. Однако эта теоретическая производительность не учитывает накладные расходы на регенерацию и подразумевает, что требуемые страницы уже открыты. Из-за указанных выше ограничений на реальном произвольном потоке запросов производительность, конечно же, будет ниже. Потенциальные возможности почти одновременного обслуживания множества запросов, предоставляемые микросхемами SDRAM, будут реализованы лишь при достаточно «умном» контроллере памяти. От его предусмотрительности эффективность памяти зависит, пожалуй, больше, чем у простых модулей FPM и EDO DRAM.

Память DDR SDRAM представляет собой дальнейшее развитие SDRAM. Как и следует из названия (Dual Data Rate — удвоенная скорость данных), у микросхем DDR SDRAM данные внутри пакета передаются с удвоенной скоростью — они переключаются по обоим фронтам синхроимпульсов (рис. 7.7). На частоте 100 МГц DDR SDRAM имеет пиковую производительность 200 Мбит/с на вывод, что в составе 8-байтных модулей DIMM дает производительность 1600 Мбайт/с. На высоких тактовых частотах (100 МГц) двойная синхронизация предъявляет очень высокие требования к точности временных диаграмм. Для повышения точности синхронизации предпринят ряд мер.

♦ Сигнал синхронизации микросхемы подается в дифференциальной форме по двум линиям CLK и CLK# (Differential clock inputs). Это позволяет снизить влияние смещения уровней на точность определения момента синхронизации — дифференциальный приемник срабатывает в момент равенства уровней напряжения.

Перейти на страницу:

Все книги серии Наиболее полное и подробное руководство

Аппаратные интерфейсы ПК
Аппаратные интерфейсы ПК

Книга посвящена аппаратным интерфейсам, использующимся в современных персональных компьютерах и окружающих их устройствах. В ней подробно рассмотрены универсальные внешние интерфейсы, специализированные интерфейсы периферийных устройств, интерфейсы устройств хранения данных, электронной памяти, шины расширения, аудио и видеоинтерфейсы, беспроводные интерфейсы, коммуникационные интерфейсы, вспомогательные последовательные интерфейсы. Сведения по интерфейсам включают состав, описание сигналов и их расположение на разъемах, временные диаграммы, регистровые модели интерфейсных адаптеров, способы использования в самостоятельно разрабатываемых устройствах. Книга адресована широкому кругу специалистов, связанных с эксплуатацией ПК, а также разработчикам аппаратных средств компьютеризированной аппаратуры и их программной поддержки.

Михаил Юрьевич Гук

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов

Похожие книги

GPS: Все, что Вы хотели знать, но боялись спросить
GPS: Все, что Вы хотели знать, но боялись спросить

Определение своего положения с помощью GPS навигатора, отдельного прибора, или устройства, встроенного в карманный компьютер или сотовый телефон, уже стало совершенно обычной вещью.Постепенно столь же привычным становится определение положения объекта с помощью систем телематики на основе GPS/GSM/GPRS, когда на мониторе компьютера или экранчике сотового телефона можно увидеть участок карты с отметкой, где находится другой человек или его автомобиль.«GPS» — это первые буквы английских слов «Global Positioning System» — глобальная система местоопределения. GPS состоит из 24 искуственных спутников Земли, сети наземных станций слежения за ними и неограниченного количества пользовательских приемников-вычислителей. «GPS» предзначенна для определения текущих координат пользователя на поверхности Земли или в околоземном пространстве.По радиосигналам спутников GPS-приемники пользователей устойчиво и точно определют текущие координаты местоположения. Погрешности не превышают десятков метров. Этого вполне достаточно для решения задач НАВИГАЦИИ подвижных объектов (самолеты, корабли, космические аппараты, автомобили и т.д.).Как и многие многоцелевые вещи в нашем быту, приемник системы глобального позиционирования (GPS) по мере знакомства с ним обнаруживает массу полезных свойств, даже сверх тех, для которых он был приобретен первоначально. Оказывается существует много любопытных вопросов, на который он с легкостью отвечает, — например, какую скорость вы развиваете при ходьбе, какое расстояние вы преодолеваете при занятии бегом и с какой максимальной и средней скоростью, какую скорость вы развили, спускаясь с горы на лыжах, насколько точен спидометр вашего автомобиля и т. д. Однако основное его назначение — определение координат.

Б. К. Леонтьев , Борис Константинович Леонтьев

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Компьютерное «железо» / Книги по IT
Wi-Fi: Все, что Вы хотели знать, но боялись спросить
Wi-Fi: Все, что Вы хотели знать, но боялись спросить

Жизнь современного человека — это движение. Мобильность для нас становится одним из самых важных моментов для работы, для общения, для жизни. Многие из нас сейчас уже не представляют жизнь без сотовых телефонов, которые из средства роскоши превратились в предмет, без которого жизнь современного человека стала просто немыслима. Многие уже оценили все преимущества Bluetooth, GPRS. Эти устройства превратили наши телефоны из средств связи в незаменимых помощников в работе. К сожалению, один из самых главных недостатков этих беспроводных технологий — малый радиус действия и низкая скорость передачи данных, что сейчас становится очень важным фактором для всех нас. Поэтому к нам на помощь приходит активно развивающийся во всем мире и в России стандарт Wi-Fi. Особенно радует, что в крупных городах России, особенно в Москве и Санкт-Петербурге, начинается массовое внедрение беспроводных сетей Wi-Fi в публичных местах (так называемых Hot Spot) — отелях, аэропортах, ресторанах, торговых центрах и кафе.Что же такое Wi-Fi? Очередной мыльный пузырь IT-индустрии, который изо всех сил надувают производители и поставщики телекоммуникационного оборудования или новая технология, призванная в очередной раз изменить наш привычный мир, как это случилось когда-то с появлением Интернет и сотовой связи?

А К Щербаков , А. К. Щербаков

Компьютерное 'железо' (аппаратное обеспечение), цифровая обработка сигналов / Интернет / Компьютерное «железо» / Книги по IT