Читаем Аппараты с перемешивающими устройствами полностью

Вместо прогибов в формулу подставляются их значения:



Из этоф формулы находится Rc



Находится прогиб в сечении I по известной RC. Прогиб равен сумме прогибов от сил Q1, Q2, RC



Прогиб в сечении I от силы Q1 (c = la1)



Прогиб в сечении I от силы RC (c = l2и y = a1)



Подставляя значение RC



Прогиб в сечении I от силы Q2 (c = a2и

y = la2)



Суммарный прогиб в сечении




Формула прогиба в сечении I зависит от силы Q1 и силы Q2. Группируются члены, содержащие силу Q1 c получением формулы прогиба в сечении от силы равной Q1, приложенной в сечении I:



Если в эту формулу вести Q1 = 1, то формула покажет прогиб в сечении I от единичной силы, приложенной в сечении I:



Если в полученном уравнении Q2 = 1



если в эту формулу вести Q2 = 1,



Прогиб в сечении II от силы Q1



Прогиб в сечении II от силы RC



Прогиб в сечении II от силы Q2



Полный прогиб в сечении II



Группируя члены для сил Q1 и Q2 и принимая эти силы равными 1:



Теперь решаются уравнения прогибов х1 и х2. Коэффициент k3 заменяется на равный k2.



Вал совершает гармонические колебания:



Производные этих последних уравнений по времени:





Теперь в полученные ранее формулы для х1 и х2 подставляются вторые производные:



После преобразований:



Для определения частоты р необходимо приравнять нулю определитель:



После группировки членов, содержащих р2 и р4:



Полученная формула решается для нахождения р2:







В результате решения получаются два значения частот, соответствующих двум возможным формам колебания вала. При первой форме два груза движутся вверх, при второй форме один груз движется вверх, а другой груз движется вниз.



Критические скорости вала:



Аналогично двухпроленому валу находят частоты колебаний для многопролетных неразрезных валов.

__


Критические скорости валов относительно поперечных колебаний

Рассмотрим однопролетный вал с силой, приложенной посередине [2,с.97].

Вал жесткий:



Массой вала пренебрегаем, центр тяжести нагрузки и ось вала не совпадают за счет неточности изготовления и прогиба системы от собственного веса.

При вращении возникает центробежная сила:



Внутренняя сила упругости:



Уравнение прогиба по условию равновесия:



После решения относительно х:



Вводится обозначение:



(р – круговая частота собственных колебаний)

Получается:



Из формулы видно, что при совпадении собственной частоты поперечных колебаний со скоростью вала прогиб стремиться к бесконечности и наступает явление резонанса.

Скорость вала, равная частоте собственных поперечных колебаний, является критической скоростью.

Критическое число оборотов вала:





Нахождение критического числа оборотов вала состоит в задаче нахождения частоты собственных поперечных колебаний.

При скоростях свыше критической, центр тяжести вала устанавливается между точкой эксцентриситета на предыдущем рисунке и недеформированной осью вала.

Гибкий вал:




В этом случае формула изменится на формулу:



т.е. между х и e поменяется знак с «+» на «-».

Из этой формулы:



Из формулы видно, что с ростом скорости за пределом критической частоты прогиб вала стремится выпрямится. В пределе при x = e вал имеет прямую ось.

Лунц указывает [2,с.99] о доказательстве этого положения в работе Фепля и в работе Зоммерфельда.

__

Из формулы видно, что прогиб уменьшается с уменьшением или .

При конструировании вала необходимо уменьшать критическую частоту вала или равную ей частоту собственных поперечных колебаний вала.

Из формулы собственной круговой частоты



видно, что для уменьшения частоты р (равной критической) следует увеличить статическую деформацию вала. То есть сделать вал гибким, число оборотов которого выше резонансной частоты.

Здесь под гибким валом не понимается вал со свободно перемещающимся сечением и осью с двоякой кривизной [2,с.100].

Для изменения жесткости вала изменяют его длину, размеры сечения (инерциальные характеристики).

__

Приведем несколько отличающееся описание выкладок расчета критических оборотов вала в работе Тимошенко [31].

Тимошенко указывает [31,с.256] о возникновении критических колебаний вследствие эксцентриситета масс, возникших при изготовлении вала (биение поверхности).

Из приведенной выше теории ясно, что колебания возникают и для идеальной оси, то есть эксцентриситет сам по себе не вызывает поперечных колебаний, но, конечно может влиять на их величину.



По Тимошенко изгиб продолжается до тех пор, пока упругие силы не уравновесят центробежную силу.

Центробежная сила:



Упругая сила:



Приравнивая:



На невысокой угловой скорости с эксцентриситетом близким к нулю, прогиб незначителен. С увеличением ω прогиб увеличивается и при становится.

В этом случае угловая скорость является критической скоростью:



При превышении критической скорости формула равновесия:



(изменился знак между y и e с «+» на «+»).



Формула показывает, что с увеличением частоты, прогиб уменьшается.

Перейти на страницу:

Похожие книги

Всевидящее око фюрера
Всевидящее око фюрера

Книга посвящена деятельности эскадрилий дальней разведки люфтваффе на Восточном фронте. В отличие от широко известных эскадр истребителей или штурмовиков Ju-87, немногочисленные подразделения разведчиков не притягивали к себе столько внимания. Их экипажи действовали поодиночке, стараясь избегать контакта с противником. Но при этом невидимая деятельность разведчиков оказывала огромное влияние как на планирование, так и на весь ход боевых действий.Большая часть работы посвящена деятельности элитного подразделения люфтваффе – Aufkl.Gr.Ob.d.L., известной также как группа Ровеля. Последний внес огромный вклад в создание дальней разведки люфтваффе, а подчиненное ему подразделение развернуло свою тайную деятельность еще до начала войны с Советским Союзом. После нападения на СССР группа Ровеля вела разведку важных стратегических объектов: промышленных центров, военно-морских баз, районов нефтедобычи, а также отслеживала маршруты, по которым поставлялась союзная помощь (ленд-лиз). Ее самолеты летали над Кронштадтом, Севастополем, Москвой, всем Поволжьем, Уфой и Пермью, Баку, Тбилиси, даже Ираном и Ираком! Группа подчинялась непосредственно командованию люфтваффе и имела в своем распоряжении только лучшую технику, самые высотные и скоростные самолеты-разведчики.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
История мусора. От средних веков до наших дней
История мусора. От средних веков до наших дней

Проблема отношений человека и его отходов существует с незапамятных времен. В этой книге рассказывается, какие приключения и перипетии ожидали тех, кто имеет дело с бытовыми отходами, повествуется об их удачах и невзгодах. Здесь приведены свидетельства человеческих усилий в деле освобождения от остатков жизнедеятельности, напоминается о том, сколько воображения, изобретательности проявлено, чтобы извлечь из всего этого толику полезных ресурсов и использовать их, будь то в богатых, бедных или развивающихся странах. Отбросы убивают, угрожают поглотить целые города, изменяют городской пейзаж, отапливают и освещают жилища, обеспечивают выживание миллионов обиженных судьбой, создают всякого рода «малые промыслы», откармливают стада свиней, играют с детьми, дают обманчивый, но все же выход из одиночества для узников, служат источником вдохновения для сумасшедших и художников, а то и основой праздничных зрелищ.Катрин де Сильги — видный специалист по охране окружающей среды.

Катрин де Сильги

Технические науки
Творчество как точная наука. Теория решения изобретательских задач
Творчество как точная наука. Теория решения изобретательских задач

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга. Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы. Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.

Генрих Саулович Альтов

Технические науки / Прочая научная литература / Образование и наука