Читаем Аппараты с перемешивающими устройствами полностью

Рассмотрим шарнирно опертый стержень [32,с.200]. Система уравнений распадется на две независимые системы. Уравнение, описывающее только изгибные колебания в плоскости симметрии:



Уравнения, описывающие изгибно-крутильные колебания:



Граничные условия при x = 0 и x = l:



Граничные условия удовлетворяются при:



Собственные частоты определяются из формулы:



Частоты изгибных и крутильных колебаний :





Собственные частоты колебаний:



При a3 = 0 центр тяжести и центр изгиба совпадают,



__

Как видно, формулы Тимошенко и по справочнику [32] для определения поперечных и изгибных колебаний почти полностью совпадают.

Однако, Тимошенко указывает о независимости от и необходимости применения метода Релея-Ритца.

__

Таким образом, для вала с мешалками как для балки по приведенной выше теории должны быть рассчитаны поперечные колебания, например, для неразрезной балки на трех опорах.

Затем должны быть рассчитаны крутильные колебания. Но в процессе перемешивания крутильных колебаний может и не возникать, в этом случае критические частоты будут строго соответсвовать поперечным частотам собственных колебаний. В случае наличия крутильных колебаний, их необходимо определить и проверку прочности выполнить для поперечных и крутильных колебаний.

Метод определения критической скорости по работе Тимошенко [31], где колебания связываются с эксцентриситетом необходимо считать некорректным. Колебания возникнут и при отсутсвиии эксцентриситета, однако, условия для статической балки и вращающегося вала с учетом эксцентриситета будут отличаться.

__

Тимошенко указывает о необходимости численного выполнения расчетов колебаний в работе [30]. То есть в том числе маститый специалист признает превосходство численных методов над ручными расчетами.

__

Итак, можно сделать следующий вывод: теорию колебаний можно применять для ручного расчета на практике, но она больше необходима для глубокого понимания физики процесса колебаний, а расчеты должны выполняться методом конечных элементов в специальном программном пакете, например, ANSYS.

Расчет валов методом конечных элементов

В динамической задаче воздействие внешних сил является функцией времени. Напряженно-деформированное состояние зависит от времени. Время является дополнительным параметром, усложняющим расчет по сравнению со статическими расчетами.

Уравнения движения динамической системы выводятся с применением принципа Даламбера, на основе принципа возможных перемещений, на основе вариационного принципа Гамильтона.

Метода Даламбера удобно применять для систем с небольшим числом степеней свободы [20,с.486], к которым относятся валы с мешалками. Но вариационный подход Гамильтона является обобщением методов. Поэтому расчет вала с мешалками методом конечных элементов приведем на основе вариационного подхода Гамильтона.

Принцип Гамильтона записывается в форме [20]:



(Т и П – кинетическая и потенциальная энергии, Wne – силы демпфирования).

Функционал Лагранжа [20]:





Функционал Лагранжа по принципу Гамильтона при возможных перемещениях удовлетворяет условиям совместности и граничным условиям на контуре в течении времени от t1 до t2 и имеет стационарное значение.

Начальное положение для вариационной формулировки МКЭ следует при Т = 0 и Wne = 0:



Введем зависимости для Т, П и Wne от обобщенных перемещений, скоростей и сил [20]:



После подстановки в интеграл и преобразований получим уравнение движения Лагранжа:



Для конечного элемента объема V [20]

– кинетическая энергия в матричной форме:



– потенциальная энергия (складывающаяся из внутренней энергии деформации, потенциальной энергии внешних объемных и внешних поверхностных сил):



В конечном элементе поле перемещений и деформаций записываются интерполяционными функциями:



Скорость связана с обобщенной скоростью:



Силы демпфирования пропорциональны скоростям (являются неконсервативными):



Обобщенные силы в узлах конечного элемента при допущении о равномерном распределении сил демпфирования в единице объема, записываются формулой:



Формулы для кинетической и потенциальной энергии можно записать после преобразований в виде:





После подстановки записанных формул в первую формулу вариационной формулировки, получается матричная формулировка конечного элемента [20]:



m – матрица масс, c – матрица демпфирования элемента, k – матрица жесткости, Qe – вектор обобщенных сил в узлах конечного элемента.

В результате составляется уравнение движения системы конечных элементов на основе уравнений движения одного (каждого) конечного элемента [20]:



М – матрица масс, С – матрица демпфирования, K – матрица жесткости, Q – вектор обобщённых сил.

__

Собственные колебания вала находят решением последней записанной системы дифференциальных уравнений. Для колебаний без затухания, система запишется в виде [20,с.500]:



Перейти на страницу:

Похожие книги

Всевидящее око фюрера
Всевидящее око фюрера

Книга посвящена деятельности эскадрилий дальней разведки люфтваффе на Восточном фронте. В отличие от широко известных эскадр истребителей или штурмовиков Ju-87, немногочисленные подразделения разведчиков не притягивали к себе столько внимания. Их экипажи действовали поодиночке, стараясь избегать контакта с противником. Но при этом невидимая деятельность разведчиков оказывала огромное влияние как на планирование, так и на весь ход боевых действий.Большая часть работы посвящена деятельности элитного подразделения люфтваффе – Aufkl.Gr.Ob.d.L., известной также как группа Ровеля. Последний внес огромный вклад в создание дальней разведки люфтваффе, а подчиненное ему подразделение развернуло свою тайную деятельность еще до начала войны с Советским Союзом. После нападения на СССР группа Ровеля вела разведку важных стратегических объектов: промышленных центров, военно-морских баз, районов нефтедобычи, а также отслеживала маршруты, по которым поставлялась союзная помощь (ленд-лиз). Ее самолеты летали над Кронштадтом, Севастополем, Москвой, всем Поволжьем, Уфой и Пермью, Баку, Тбилиси, даже Ираном и Ираком! Группа подчинялась непосредственно командованию люфтваффе и имела в своем распоряжении только лучшую технику, самые высотные и скоростные самолеты-разведчики.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
История мусора. От средних веков до наших дней
История мусора. От средних веков до наших дней

Проблема отношений человека и его отходов существует с незапамятных времен. В этой книге рассказывается, какие приключения и перипетии ожидали тех, кто имеет дело с бытовыми отходами, повествуется об их удачах и невзгодах. Здесь приведены свидетельства человеческих усилий в деле освобождения от остатков жизнедеятельности, напоминается о том, сколько воображения, изобретательности проявлено, чтобы извлечь из всего этого толику полезных ресурсов и использовать их, будь то в богатых, бедных или развивающихся странах. Отбросы убивают, угрожают поглотить целые города, изменяют городской пейзаж, отапливают и освещают жилища, обеспечивают выживание миллионов обиженных судьбой, создают всякого рода «малые промыслы», откармливают стада свиней, играют с детьми, дают обманчивый, но все же выход из одиночества для узников, служат источником вдохновения для сумасшедших и художников, а то и основой праздничных зрелищ.Катрин де Сильги — видный специалист по охране окружающей среды.

Катрин де Сильги

Технические науки
Творчество как точная наука. Теория решения изобретательских задач
Творчество как точная наука. Теория решения изобретательских задач

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга. Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы. Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.

Генрих Саулович Альтов

Технические науки / Прочая научная литература / Образование и наука